A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
分析 根據(jù)f(x)的單調(diào)區(qū)間求出a的范圍,利用f(x)的單調(diào)性求出f(x)的最大值和最小值,得出g(a)的解析式,利用g(a)的單調(diào)性計(jì)算g(a)的最小值.
解答 解:∵f(x)在(-∞,1]上是減函數(shù),
∴-a≥1,即a≤-1.
∴f(x)在[a+1,1]上的最大值為f(a+1)=3a2+4a+4,
最小值為f(1)=4+2a,
∴g(a)=3a2+2a=3(a+$\frac{1}{3}$)2-$\frac{1}{3}$,
∴g(a)在(-∞,-1]上單調(diào)遞減,
∴g(a)的最小值為g(-1)=1.
故選B.
點(diǎn)評 本題考查了二次函數(shù)的單調(diào)性判斷,最值計(jì)算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | $\frac{{\sqrt{10}}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 160 cm2 | B. | 320 cm2 | C. | 40$\sqrt{89}$cm2 | D. | 80$\sqrt{89}$cm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -110 | B. | -90 | C. | 90 | D. | 110 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com