若直線與雙曲線的右支交于不同的兩點(diǎn),那么的取值范圍是(  )
A.(B.(
C.(D.(
A

試題分析:根據(jù)題意,聯(lián)立方程組直線與雙曲線,可知(1-k2)x2-4kx-10=0…①若直線y=kx+2與雙曲線x2-y2=6的右支交于不同的兩點(diǎn),則方程①有兩個(gè)不等的正根 故可知實(shí)數(shù)K得范圍是(),故選A.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)圓錐曲線中的范圍問(wèn)題,其中分析出題目的含義是直線與雙曲線聯(lián)立方程有兩個(gè)不等的負(fù)根,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)到點(diǎn)的距離與點(diǎn)軸的距離的差等于1.(I)求動(dòng)點(diǎn)的軌跡的方程;(II)過(guò)點(diǎn)作兩條斜率存在且互相垂直的直線,設(shè)與軌跡相交于點(diǎn),與軌跡相交于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知過(guò)拋物線y2 =2px(p>0)的焦點(diǎn)F的直線x-my+m=0與拋物線交于A,B兩點(diǎn),且△OAB(O為坐標(biāo)原點(diǎn))的面積為2,則m6+ m4的值為(   )
A.1B. 2 C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F、F,A是橢圓C上的一點(diǎn),AF⊥FF,O是坐標(biāo)原點(diǎn),OB垂直AF于B,且OF=3OB.

(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設(shè)圓x+y=t上任意點(diǎn)M(x,y)處的切線交橢圓C于Q、Q兩點(diǎn),那么OQ⊥OQ”成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)是雙曲線和圓的一個(gè)交點(diǎn),是雙曲線的兩個(gè)焦點(diǎn),,則雙曲線的離心率為
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,點(diǎn)A、BC在數(shù)軸上,點(diǎn)BC關(guān)于點(diǎn)A對(duì)稱(chēng),若點(diǎn)A、B對(duì)應(yīng)的實(shí)數(shù)分別是和-1,則點(diǎn)C所對(duì)應(yīng)的實(shí)數(shù)是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓過(guò)點(diǎn),且它的離心率.直線
與橢圓交于、兩點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)時(shí),求證:、兩點(diǎn)的橫坐標(biāo)的平方和為定值;
(Ⅲ)若直線與圓相切,橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓()過(guò)點(diǎn),其左、右焦點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過(guò)定點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,焦距為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)不過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn)、,且直線、的斜率依次成等比數(shù)列,求△面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案