已知平面內(nèi)一動點
到點
的距離與點
到
軸的距離的差等于1.(I)求動點
的軌跡
的方程;(II)過點
作兩條斜率存在且互相垂直的直線
,設(shè)
與軌跡
相交于點
,
與軌跡
相交于點
,求
的最小值.
試題分析:(1)設(shè)動點
的坐標(biāo)為
,由題意得
…2分
化簡得
當(dāng)
時
;當(dāng)
時
所以動點
的軌跡
的方程為
和
(
) ………………………5分
(2)由題意知,直線
的斜率存在且不為0,設(shè)為
,則
的方程為
.
由
設(shè)
則
,
…6分
因為
,所以
的斜率為
.設(shè)
,則同理可得
,
……7分
………10分
…12分
當(dāng)且僅當(dāng)
即
時,
取最小值16.…13分
點評:從近幾年課標(biāo)地區(qū)的高考命題來看,解析幾何綜合題主要考查直線和圓錐曲線的位置關(guān)系以及范圍、最值、定點、定值、存在性等問題,直線與多種曲線的位置關(guān)系的綜合問題將會逐步成為今后命題的熱點,尤其是把直線和圓的位置關(guān)系同本部分知識的結(jié)合,將逐步成為今后命題的一種趨勢.近幾年高考題中經(jīng)常出現(xiàn)了以函數(shù)、平面向量、導(dǎo)數(shù)、數(shù)列、不等式、平面幾何、數(shù)學(xué)思想方法等知識為背景,綜合考查運用圓錐曲線的有關(guān)知識分析問題、解決問題的能力
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在同一平面直角坐標(biāo)系中,經(jīng)過坐標(biāo)伸縮變換
后,曲線
C變?yōu)榍
,則曲線
C的方程為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若直線
與雙曲線
的右支交于不同的兩點,那么
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
以拋物線
的焦點為圓心,且過坐標(biāo)原點的圓的方程為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
,左、右兩個焦點分別為
、
,上頂點
,
為正三角形且周長為6.
(1)求橢圓
的標(biāo)準(zhǔn)方程及離心率;
(2)
為坐標(biāo)原點,
是直線
上的一個動點,求
的最小值,并求出此時點
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在平面直角坐標(biāo)系
中,雙曲線中心在原點,焦點在
軸上,一條漸近線方程為
,
則它的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系
中,點
到兩點
,
的距離之和等于4,設(shè)點
的軌跡為
.
(Ⅰ)寫出
的方程;
(Ⅱ)設(shè)直線
與
交于
兩點.
k為何值時
?此時
的值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如果函數(shù)
的圖像與曲線
恰好有兩個不同的公共點,則實數(shù)
的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
和雙曲線
有公共的焦點,那么雙曲線的漸近線方程是
.
查看答案和解析>>