已知直線l經(jīng)過直線2x+y-5=0與x-2y=0的交點.

(1)點A(5,0)到l的距離為3,求l的方程;

(2)求點A(5,0)到l的距離的最大值.

 

(1)x=2或4x-3y-5=0

(2)

【解析】【解析】
(1)經(jīng)過兩已知直線交點的直線系方程為(2x+y-5)+λ(x-2y)=0,

即(2+λ)x+(1-2λ)y-5=0.

=3.

即2λ2-5λ+2=0,

∴λ=2或

∴l(xiāng)的方程為x=2或4x-3y-5=0.

(2)由

解得交點P(2,1),如圖,過P作任一直線l,設d為點A到l的距離,則d≤|PA|(當l⊥PA時等號成立).

∴dmax=|PA|=

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-7拋物線(解析版) 題型:選擇題

已知F是拋物線y2=x的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到y(tǒng)軸的距離為(  )

A. B. C. D.1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-4直線與圓、圓與圓的位置關系(解析版) 題型:填空題

已知直線l:x-y+4=0與圓C:(x-1)2+(y-1)2=2,則圓C上各點到l距離的最小值為________,最大值為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-3圓的方程(解析版) 題型:填空題

若圓的方程為x2+y2+kx+2y+k2=0,則當圓的面積最大時,圓心坐標為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-2直線的交點坐標與距離公式(解析版) 題型:解答題

如圖,函數(shù)f(x)=x+的定義域為(0,+∞).設點P是函數(shù)圖象上任一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M,N.

(1)證明:|PM|·|PN|為定值;

(2)O為坐標原點,求四邊形OMPN面積的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-2直線的交點坐標與距離公式(解析版) 題型:選擇題

若動點A,B分別在直線l1:x+y-7=0和l2:x+y-5=0上移動,則AB的中點M到原點的距離的最小值為(  )

A.3 B.2 C.3 D.4

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-1直線的傾斜角與斜率、直線方程(解析版) 題型:填空題

若關于x的方程|x-1|-kx=0有且只有一個正實數(shù)根,則實數(shù)k的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-7立體幾何中的向量方法(解析版) 題型:解答題

如下圖所示,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.

(1)求證:AC⊥平面BDE;

(2)求二面角F-BE-D的余弦值;

(3)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結論.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:選擇題

在正方體ABCD-A1B1C1D1中,點M,N分別在線段AB1,BC1上,且AM=BN.以下結論:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1異面,其中有可能成立的個數(shù)為(  )

A.4 B.3 C.2 D.1

 

查看答案和解析>>

同步練習冊答案