4.已知x+y=2(x>0,y>0),則${x^2}+{y^2}+4\sqrt{xy}$的最大值為6.

分析 利用配方法,結(jié)合二次函數(shù)的圖象與性質(zhì),即可求出${x^2}+{y^2}+4\sqrt{xy}$的最大值.

解答 解:∵x>0,y>0,x+y=2,
∴2≥2$\sqrt{xy}$,
∴0<xy≤1,當(dāng)且僅當(dāng)x=y=1時(shí)取“=”;
∴${x^2}+{y^2}+4\sqrt{xy}$=(x+y)2-2xy+4$\sqrt{xy}$
=22-2${(\sqrt{xy}-1)}^{2}$+2=6-2${(\sqrt{xy}-1)}^{2}$≤6,
即${x^2}+{y^2}+4\sqrt{xy}$的最大值是6.
故答案為:6.

點(diǎn)評(píng) 本題考查了基本不等式的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-n(n∈N*).正項(xiàng)等比數(shù)列{bn}的首項(xiàng)b1=1,且3a2是b2,b3的等差中項(xiàng).
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(II)若cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知四棱錐P-ABCD中,平面PAD⊥平面ABCD,其中四邊形ABCD為正方形,△PAD為等邊三角形,AB=2,則四棱錐P-ABCD外接球的體積為$\frac{{28\sqrt{21}}}{27}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)集合A、B均為實(shí)數(shù)集R的子集,記:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={-1,3},試用列舉法表示A+B;
(2)設(shè)a1=$\frac{2}{3}$,當(dāng)n∈N*,且n≥2時(shí),曲線(xiàn)$\frac{x^2}{{{n^2}-n+1}}+\frac{y^2}{1-n}=\frac{1}{9}$的焦距為an,如果A={a1,a2,…,an},B=$\{-\frac{1}{9},-\frac{2}{9},-\frac{2}{3}\}$,設(shè)A+B中的所有元素之和為Sn,對(duì)于滿(mǎn)足m+n=3k,且m≠n的任意正整數(shù)m、n、k,不等式Sm+Sn-λSk>0恒成立,求實(shí)數(shù)λ的最大值;
(3)若整數(shù)集合A1⊆A1+A1,則稱(chēng)A1為“自生集”,若任意一個(gè)正整數(shù)均為整數(shù)集合A2的某個(gè)非空有限子集中所有元素的和,則稱(chēng)A2為“N*的基底集”,問(wèn):是否存在一個(gè)整數(shù)集合既是自生集又是N*的基底集?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,AC=5,$\frac{1}{tan\frac{A}{2}}$+$\frac{1}{tan\frac{C}{2}}$-$\frac{5}{tan\frac{B}{2}}$=0,則BC+AB=( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,平行四邊形ABCD的兩條對(duì)角線(xiàn)相交于點(diǎn)M,且$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,則$\overrightarrow{MD}$=( 。
A.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$B.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$C.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$D.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在正三棱柱ABC-A1B1C1中,若AB=$\sqrt{2}$BB1,則AB1與BC1所成角的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸是坐標(biāo)軸,且焦點(diǎn)在直線(xiàn)2x+y-2=0上的拋物線(xiàn)方程是y2=4x或x2=8y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,右頂點(diǎn)為E,過(guò)F1于x軸垂直的直線(xiàn)與橢圓C相交,其中一個(gè)交點(diǎn)為M(-$\sqrt{3}$,$\frac{1}{2}$).
(I)求橢圓C的方程;
(II)設(shè)直線(xiàn)l與橢圓C交于不同的兩點(diǎn)A,B.
(i)若直線(xiàn)l過(guò)定點(diǎn)(1,0),直線(xiàn)AE,BE的斜率為k1,k2(k1≠0,k2≠0),證明:k1•k2為定值;
(ii)若直線(xiàn)l的垂直平分線(xiàn)與x軸交于一點(diǎn)P,求點(diǎn)P的橫坐標(biāo)xp的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案