【題目】有一容積為的正方體容器,在棱、和面對(duì)角線(xiàn)的中點(diǎn)各有一小孔、、,若此容器可以任意放置,則其可裝水的最大容積是( )
A.B.C.D.
【答案】C
【解析】
分別討論水面過(guò)直線(xiàn)、、時(shí)從正方體截去的幾何體體積的最小值,即可得出此容器可裝水的最大容積.
當(dāng)水面過(guò)直線(xiàn)時(shí),如下圖所示,
水面截去正方體所得幾何體為三棱柱,
當(dāng)點(diǎn)在水面上方或水面上時(shí),容器中的水不會(huì)漏,且當(dāng)點(diǎn)與點(diǎn)重合時(shí),截去的幾何體體積最小為;
當(dāng)水面過(guò)直線(xiàn)時(shí),如下圖所示,
水面截去正方體所得幾何體為三棱臺(tái),
當(dāng)點(diǎn)在水面上方或水面上時(shí),容器中的水不會(huì)漏,且當(dāng)點(diǎn)在直線(xiàn)上時(shí),截去的幾何體為三棱柱,且體積最小為;
當(dāng)水面過(guò)直線(xiàn)時(shí),如下圖所示,
當(dāng)點(diǎn)在水面上方或水面上時(shí),容器中的水不會(huì)漏,此時(shí)水面截去正方體所得幾何體為,且直線(xiàn)過(guò)點(diǎn),易知梯形的面積為正方形面積的一半,此時(shí),幾何體的體積為.
當(dāng)與直線(xiàn)重合時(shí),如下圖所示,
此時(shí),點(diǎn)在水面上方,容器不會(huì)漏水,水面截去正方體所得幾何體為三棱錐,
該三棱錐的體積為.
綜上可知,水面截去截去正方體所得幾何體體積的最小值為.
因此,該容器可裝水的最大容積是.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,取同離心率的兩個(gè)橢圓成軸對(duì)稱(chēng)內(nèi)外嵌套得一個(gè)標(biāo)志,為美觀(guān)考慮,要求圖中標(biāo)記的①、②、③)三個(gè)區(qū)域面積彼此相等.(已知:橢圓面積為圓周率與長(zhǎng)半軸、短半軸長(zhǎng)度之積,即橢圓面積為)
(1)求橢圓的離心率的值;
(2)已知外橢圓長(zhǎng)軸長(zhǎng)為6,用直角角尺兩條直角邊內(nèi)邊緣與外橢圓相切,移動(dòng)角尺繞外橢圓一周,得到由點(diǎn)M生成的軌跡將兩橢圓圍起來(lái),整個(gè)標(biāo)志完成.請(qǐng)你建立合適的坐標(biāo)系,求出點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的周期為,圖象的一個(gè)對(duì)稱(chēng)中心為.將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將所得到的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象.
(1)求函數(shù)與的解析式.
(2)定義:當(dāng)函數(shù)取得最值時(shí),函數(shù)圖象上對(duì)應(yīng)的點(diǎn)稱(chēng)為函數(shù)的最值點(diǎn),如果函數(shù)的圖象上至少有一個(gè)最大值點(diǎn)和一個(gè)最小值點(diǎn)在圓的內(nèi)部或圓周上,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,分別是的極值點(diǎn),且有,則函數(shù) ( )
A.在區(qū)間上單調(diào)遞增B.在區(qū)間上單調(diào)遞增
C.在區(qū)間上單調(diào)遞減D.在區(qū)間上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】王先生購(gòu)買(mǎi)了一部手機(jī),欲使用中國(guó)移動(dòng)“神州行”卡或加入聯(lián)通的網(wǎng),經(jīng)調(diào)查其收費(fèi)標(biāo)準(zhǔn)見(jiàn)下表:(注:本地電話(huà)費(fèi)以分為計(jì)費(fèi)單位,長(zhǎng)途話(huà)費(fèi)以秒為計(jì)費(fèi)單位.)
網(wǎng)絡(luò) | 月租費(fèi) | 本地話(huà)費(fèi) | 長(zhǎng)途話(huà)費(fèi) |
甲:聯(lián)通 | 元 | 元/分 | 元/秒 |
乙:移動(dòng)“神州行” | 無(wú) | 元/分 | 元/秒 |
若王先生每月?lián)艽虮镜仉娫?huà)的時(shí)間是撥打長(zhǎng)途電話(huà)時(shí)間的倍,若要用聯(lián)通應(yīng)最少打多長(zhǎng)時(shí)間的長(zhǎng)途電話(huà)才合算.( )
A.秒B.秒C.秒D.秒
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在上,以R為切點(diǎn)的D的切線(xiàn)的斜率為,過(guò)外一點(diǎn)A(不在x軸上)作的切線(xiàn),點(diǎn)BC為切點(diǎn),作平行于的切線(xiàn)(切點(diǎn)為D),點(diǎn)MN分別是與的交點(diǎn)(如圖).
(1)用BC的縱坐標(biāo)st表示直線(xiàn)的斜率;
(2)設(shè)三角形面積為S,若將由過(guò)外一點(diǎn)的兩條切線(xiàn)及第三條切線(xiàn)(平行于兩切線(xiàn)切點(diǎn)的連線(xiàn))圍成的三角形叫做“切線(xiàn)三角形”,如,再由MN作“切線(xiàn)三角形”,并依這樣的方法不斷作切線(xiàn)三角形…,試?yán)?/span>“切線(xiàn)三角形”的面積和計(jì)算由拋物線(xiàn)及所圍成的陰影部分的面積T.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,為的中點(diǎn).
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn)離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)經(jīng)過(guò)橢圓左焦點(diǎn)的直線(xiàn)(不經(jīng)過(guò)點(diǎn)且不與軸重合)與橢圓交于兩點(diǎn),與直線(xiàn):交于點(diǎn),記直線(xiàn)的斜率分別為.則是否存在常數(shù),使得向量 共線(xiàn)?若存在求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了解社區(qū)群眾體育活動(dòng)的開(kāi)展情況,擬采用分層抽樣的方法從A,B,C三個(gè)行政區(qū)抽出6個(gè)社區(qū)進(jìn)行調(diào)查.已知A,B,C行政區(qū)中分別有12,18,6個(gè)社區(qū).
(1)求從A,B,C三個(gè)行政區(qū)中分別抽取的社區(qū)個(gè)數(shù);
(2)若從抽得的6個(gè)社區(qū)中隨機(jī)的抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求抽取的2個(gè)社區(qū)中至少有一個(gè)來(lái)自A行政區(qū)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com