【題目】有一容積為的正方體容器,在棱、和面對(duì)角線(xiàn)的中點(diǎn)各有一小孔、,若此容器可以任意放置,則其可裝水的最大容積是(

A.B.C.D.

【答案】C

【解析】

分別討論水面過(guò)直線(xiàn)、、時(shí)從正方體截去的幾何體體積的最小值,即可得出此容器可裝水的最大容積.

當(dāng)水面過(guò)直線(xiàn)時(shí),如下圖所示,

水面截去正方體所得幾何體為三棱柱,

當(dāng)點(diǎn)在水面上方或水面上時(shí),容器中的水不會(huì)漏,且當(dāng)點(diǎn)與點(diǎn)重合時(shí),截去的幾何體體積最小為;

當(dāng)水面過(guò)直線(xiàn)時(shí),如下圖所示,

水面截去正方體所得幾何體為三棱臺(tái),

當(dāng)點(diǎn)在水面上方或水面上時(shí),容器中的水不會(huì)漏,且當(dāng)點(diǎn)在直線(xiàn)上時(shí),截去的幾何體為三棱柱,且體積最小為;

當(dāng)水面過(guò)直線(xiàn)時(shí),如下圖所示,

當(dāng)點(diǎn)在水面上方或水面上時(shí),容器中的水不會(huì)漏,此時(shí)水面截去正方體所得幾何體為,且直線(xiàn)過(guò)點(diǎn),易知梯形的面積為正方形面積的一半,此時(shí),幾何體的體積為.

當(dāng)與直線(xiàn)重合時(shí),如下圖所示,

此時(shí),點(diǎn)在水面上方,容器不會(huì)漏水,水面截去正方體所得幾何體為三棱錐,

該三棱錐的體積為.

綜上可知,水面截去截去正方體所得幾何體體積的最小值為.

因此,該容器可裝水的最大容積是.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,取同離心率的兩個(gè)橢圓成軸對(duì)稱(chēng)內(nèi)外嵌套得一個(gè)標(biāo)志,為美觀(guān)考慮,要求圖中標(biāo)記的①、②、③)三個(gè)區(qū)域面積彼此相等.(已知:橢圓面積為圓周率與長(zhǎng)半軸、短半軸長(zhǎng)度之積,即橢圓面積為

(1)求橢圓的離心率的值;

2)已知外橢圓長(zhǎng)軸長(zhǎng)為6,用直角角尺兩條直角邊內(nèi)邊緣與外橢圓相切,移動(dòng)角尺繞外橢圓一周,得到由點(diǎn)M生成的軌跡將兩橢圓圍起來(lái),整個(gè)標(biāo)志完成.請(qǐng)你建立合適的坐標(biāo)系,求出點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的周期為,圖象的一個(gè)對(duì)稱(chēng)中心為.將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將所得到的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象.

(1)求函數(shù)的解析式.

(2)定義:當(dāng)函數(shù)取得最值時(shí),函數(shù)圖象上對(duì)應(yīng)的點(diǎn)稱(chēng)為函數(shù)的最值點(diǎn),如果函數(shù)的圖象上至少有一個(gè)最大值點(diǎn)和一個(gè)最小值點(diǎn)在圓的內(nèi)部或圓周上,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,分別是的極值點(diǎn),且有,則函數(shù) ( )

A.在區(qū)間上單調(diào)遞增B.在區(qū)間上單調(diào)遞增

C.在區(qū)間上單調(diào)遞減D.在區(qū)間上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】王先生購(gòu)買(mǎi)了一部手機(jī),欲使用中國(guó)移動(dòng)“神州行”卡或加入聯(lián)通的網(wǎng),經(jīng)調(diào)查其收費(fèi)標(biāo)準(zhǔn)見(jiàn)下表:(注:本地電話(huà)費(fèi)以分為計(jì)費(fèi)單位,長(zhǎng)途話(huà)費(fèi)以秒為計(jì)費(fèi)單位.

網(wǎng)絡(luò)

月租費(fèi)

本地話(huà)費(fèi)

長(zhǎng)途話(huà)費(fèi)

甲:聯(lián)通

/

/

乙:移動(dòng)“神州行”

無(wú)

/

/

若王先生每月?lián)艽虮镜仉娫?huà)的時(shí)間是撥打長(zhǎng)途電話(huà)時(shí)間的倍,若要用聯(lián)通應(yīng)最少打多長(zhǎng)時(shí)間的長(zhǎng)途電話(huà)才合算.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),R為切點(diǎn)的D的切線(xiàn)的斜率為,過(guò)外一點(diǎn)A(不在x軸上)的切線(xiàn),點(diǎn)BC為切點(diǎn),作平行于的切線(xiàn)(切點(diǎn)為D),點(diǎn)MN分別是與的交點(diǎn)(如圖).

(1)BC的縱坐標(biāo)st表示直線(xiàn)的斜率;

(2)設(shè)三角形面積為S,若將由過(guò)外一點(diǎn)的兩條切線(xiàn)及第三條切線(xiàn)(平行于兩切線(xiàn)切點(diǎn)的連線(xiàn))圍成的三角形叫做切線(xiàn)三角形”,,再由MN切線(xiàn)三角形”,并依這樣的方法不斷作切線(xiàn)三角形…,試?yán)?/span>切線(xiàn)三角形的面積和計(jì)算由拋物線(xiàn)及所圍成的陰影部分的面積T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,的中點(diǎn).

(Ⅰ)求證:PA//平面BEF;

(Ⅱ)若PCAB所成角為,求的長(zhǎng);

(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn)離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)經(jīng)過(guò)橢圓左焦點(diǎn)的直線(xiàn)(不經(jīng)過(guò)點(diǎn)且不與軸重合)與橢圓交于兩點(diǎn),與直線(xiàn):交于點(diǎn),記直線(xiàn)的斜率分別為.則是否存在常數(shù),使得向量 共線(xiàn)?若存在求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了解社區(qū)群眾體育活動(dòng)的開(kāi)展情況,擬采用分層抽樣的方法從A,B,C三個(gè)行政區(qū)抽出6個(gè)社區(qū)進(jìn)行調(diào)查.已知A,B,C行政區(qū)中分別有12,18,6個(gè)社區(qū).

1)求從A,B,C三個(gè)行政區(qū)中分別抽取的社區(qū)個(gè)數(shù);

2)若從抽得的6個(gè)社區(qū)中隨機(jī)的抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求抽取的2個(gè)社區(qū)中至少有一個(gè)來(lái)自A行政區(qū)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案