【題目】已知函數(shù) 其中 .若函數(shù) 有3個不同的零點(diǎn),則m的取值范圍是

【答案】
【解析】解:










對于
當(dāng) 時,
=0

解得 ,
結(jié)合
可知在 上只有一個零點(diǎn)
所以要使函數(shù)有3個零點(diǎn)則在x<1上,必有兩個零點(diǎn)。
結(jié)合圖象可得
又∵ m>0
∴ 0<m<1
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的零點(diǎn)與方程根的關(guān)系,掌握二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個交點(diǎn),二次函數(shù)有兩個零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個交點(diǎn),二次函數(shù)有一個二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等腰△ABC中,AC=BC= ,AB=2,E、F分別為AC、BC的中點(diǎn),將△EFC沿EF折起,使得C到P,得到四棱錐P﹣ABFE,且AP=BP=

(1)求證:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,且a3=3,S3=9
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2 ,且{bn}為遞增數(shù)列,若cn= ,求證:c1+c2+c3+…+cn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x|+|x+1|.
(1)若x∈R,恒有f(x)≥λ成立,求實(shí)數(shù)λ的取值范圍;
(2)若m∈R,使得m2+2m+f(t)=0成立,試求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓中心在坐標(biāo)原點(diǎn),A(2,0),B(0,1)是它的兩個頂點(diǎn),直線y=kx(k>0)與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).
(Ⅰ)若 ,求k的值;
(Ⅱ)求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列 的前n項(xiàng)和為Sn ,且滿足:
;② ,其中
(1)求p的值;
(2)數(shù)列 能否是等比數(shù)列?請說明理由;
(3)求證:當(dāng)r 2時,數(shù)列 是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,a,b,c分別為角A,B,C的對邊,csinC﹣asinA=( c﹣b)sinB.
(Ⅰ)求角A;
(Ⅱ)若a=1,求三角形ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位.且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A,B.若點(diǎn)P的坐標(biāo)為(1,2),求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在(m,n)上的導(dǎo)函數(shù)為g(x),x∈(m,n),g(x)若的導(dǎo)函數(shù)小于零恒成立,則稱函數(shù)f(x)在(m,n)上為“凸函數(shù)”.已知當(dāng)a≤2時, ,在x∈(﹣1,2)上為“凸函數(shù)”,則函數(shù)f(x)在(﹣1,2)上結(jié)論正確的是(
A.既有極大值,也有極小值
B.有極大值,沒有極小值
C.沒有極大值,有極小值
D.既無極大值,也沒有極小值

查看答案和解析>>

同步練習(xí)冊答案