已知命題p:?x∈[1,2],x2≥a;命題q:?x∈R,x2+2ax+2-a=0,若命題p∧q是真命題,則實(shí)數(shù)a的取值范圍是( 。
A、a≤-2或a=1
B、a≤-2或1≤a≤2
C、a≥1
D、-2≤a≤1
考點(diǎn):復(fù)合命題的真假
專(zhuān)題:簡(jiǎn)易邏輯
分析:根據(jù)二次函數(shù)的最值,一元二次方程解的情況和判別式△的關(guān)系即可求出命題p,q下a的取值范圍,再根據(jù)p∧q為真命題得到p,q都為真命題,所以對(duì)前面所求a的取值范圍求交集即可.
解答: 解:命題p:x2在[1,2]上的最小值為1,∴a≤1;
命題q:方程x2+2ax+2-a=0有解,
∴△=4a2-4(2-a)≥0,解得a≥1,或a≤-2;
若命題p∧q是真命題,則p,q都是真命題;
a≤1
a≥1,或a≤-2
,∴a=1,或a≤-2;
∴實(shí)數(shù)a的取值范圍是{a|a≤-2,或a=1};
故選A.
點(diǎn)評(píng):考查根據(jù)單調(diào)性求二次函數(shù)的最值,一元二次方程解的情況和判別式△的關(guān)系,以及p∧q的真假和p,q真假的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)命題:
①命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3<0”
②a∈R,“
1
a
<1”是“a>1”的必要不充分條件
③“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
④命題“若x2-3x+2=0則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:關(guān)于x的方程x2+mx+1=0有兩個(gè)不等的負(fù)實(shí)數(shù)根,q:關(guān)于x的方程4x2+4(m-2)x+1=0的兩個(gè)實(shí)根分別在(0,1)和(1,2)內(nèi),若(¬p)∧(¬q)是真命題,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x+1,則f(2x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在R上的連續(xù)函數(shù)f(x),存在常數(shù)k(k∈R),使得f(x+k)+kf(x)=0對(duì)任意實(shí)數(shù)x都成立,則稱(chēng)f(x)為k層的螺旋函數(shù),現(xiàn)給出四個(gè)命題:
①f(x)=2是2層螺旋函數(shù); 
②f(x)=x2是k層螺旋函數(shù);
③f(x)=4x是-
1
2
層螺旋函數(shù);
④f(x)=sin(πx)是1層螺旋函數(shù).
其中正確的命題有( 。
A、①③B、②③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四組不等式中,不同解的是( 。
A、
x
x2-4x+12
>1
與x>x2-4x+12
B、|x-3|>|2x+6|(x∈R) 與 (x-3)2>(2x+6)2
C、
2x-6
•(x-2)
≥0與x≥3
D、
(x-2)(x-3)
(x+1)(x+2)
≤0
與(x-2)(x-3)(x+1)(x+2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(|x-1|+|x-3|-1)
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的最小值;
(2)當(dāng)函數(shù)f(x)的定義域?yàn)镽時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿(mǎn)足
x-y+1≥0
x+y-1≥0
3x-y-3≤0
,則2x-y的最大值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是一次函數(shù),且滿(mǎn)足3f(x+1)-f(x)=2x+9,則函數(shù)f(x)的解析式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案