已知函數(shù)為實(shí)數(shù),,),
(1)若,且函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4e/c7/4e0c766e6e2cc08cd346da50b7498332.gif" style="vertical-align:middle;" />,求的表達(dá)式;
(2)在(1)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè),,且函數(shù)為偶函數(shù),判斷是否大于?

解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/35/f/z8myi.gif" style="vertical-align:middle;" />,所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/55/6/oql6v3.gif" style="vertical-align:middle;" />的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5e/0/qfmyo1.gif" style="vertical-align:middle;" />,所以 ……… 2分
所以.解得,.所以
所以           ………… 4分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8e/2/fovqe1.gif" style="vertical-align:middle;" />
=,   ……… 6分
所以當(dāng) 時(shí)單調(diào).
的范圍是時(shí),是單調(diào)函數(shù). … 8分
(Ⅲ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/55/6/oql6v3.gif" style="vertical-align:middle;" />為偶函數(shù),所以
所以     …………… 10分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/31/0/gigxz1.gif" style="vertical-align:middle;" />, 依條件設(shè),則
,所以
所以.       ……………… 12分
此時(shí)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

化簡(jiǎn)下列各式:
(1);
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題


(本小題滿分14分)一塊邊長(zhǎng)為10的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,試建立容器的容積的函數(shù)關(guān)系式,并求出函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)某創(chuàng)業(yè)投資公司擬投資開(kāi)發(fā)某種新能源產(chǎn)品,估計(jì)能獲得x∈[10,1000]萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.
(Ⅰ)若建立函數(shù)f(x)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語(yǔ)言表述公司對(duì)獎(jiǎng)勵(lì)函數(shù)f(x)模型
的基本要求;
(Ⅱ)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:(i) y=;(ii) y=4lgx-3.試分析這兩個(gè)函數(shù)模型
是否符合公司要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)二次函數(shù),已知不論為何實(shí)數(shù)恒有,
(1)求證:;
(2)求證:;
(3)若函數(shù)的最大值為8,求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知滿足不等式,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(14分)某工廠每天生產(chǎn)某種產(chǎn)品最多不超過(guò)40件,并且在生產(chǎn)過(guò)程中產(chǎn)品的正品率與每日生產(chǎn)產(chǎn)品件數(shù)()間的關(guān)系為,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%)
(Ⅰ)將日利潤(rùn)(元)表示成日產(chǎn)量(件)的函數(shù);
(Ⅱ)求該廠的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?并求出日利潤(rùn)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)已知二次函數(shù)滿足:對(duì)任意實(shí)數(shù)x,都有,且當(dāng)時(shí),有成立.  
(1)求;  
(2)若的表達(dá)式;
(3)設(shè),若圖上的點(diǎn)都位于直線的上方,求實(shí)
數(shù)m的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案