【題目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).

(1)若m=2,且p∧q為真,求實數(shù)x的取值范圍;

(2)若p是q的充分不必要條件,求實數(shù)m的取值范圍.

【答案】(1);(2)

【解析】

(1)解不等求得p,根據(jù)m的值求得q;根據(jù)p q為真可知p、q同時為真,可求得x的取值范圍。

(2)先求得q。根據(jù)pq的充分不必要條件,得到不等式組,解不等式組即可得到m的取值范圍。

(1)x2-6x+5≤0,1≤x≤5,p:1≤x≤5.

m=2,q:-1≤x≤3.

pq為真,p,q同時為真命題,

1≤x≤3.

∴實數(shù)x的取值范圍為[1,3].

(2)x2-2x+1-m2≤0,q:1-m≤x≤1+m.

pq的充分不必要條件,

解得m≥4.

∴實數(shù)m的取值范圍為[4,+∞).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險,在原地等待營救.信息中心立即把消息告知在其南偏西30°,相距20海里的C處的乙船,現(xiàn)乙船朝北偏東的方向即沿直線CB前往B處救援,則等于 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1、C、D三點的平面記為α,BB1與α的交點為Q.

(1)證明:Q為BB1的中點;
(2)若AA1=4,CD=2,梯形ABCD的面積為6,∠ADC=60°,求平面α與底面ABCD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,A,B分別是橢圓C:=1(a>b>0)的左右頂點,F為其右焦點,2|AF||FB|的等差中項,|AF||FB|的等比中項.P是橢圓C上異于A,B的任一動點,過點A作直線l⊥x.以線段AF為直徑的圓交直線AP于點A,M,連接FM交直線l于點Q.

(1)求橢圓C的方程;

(2)試問在x軸上是否存在一個定點N,使得直線PQ必過該定點N?若存在,求出點N的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人事部門對參加某次專業(yè)技術(shù)考試的100人的成績進行了統(tǒng)計,繪制的頻率分布直方圖如圖所示.規(guī)定80分以上者晉級成功,否則晉級失敗(滿分為100分).

(1)求圖中的值;

(2)估計該次考試的平均分 (同一組中的數(shù)據(jù)用該組的區(qū)間中點值代表);

(3)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認為“晉級成功”與性別有關(guān).

晉級成功

晉級失敗

合計

16

50

合計

參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,使 成立,則稱為函數(shù)的一個“生成點”,則函數(shù)的“生成點”共有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱臺ABCD﹣A1B1C1D1中,平面BCC1B1⊥平面ABCD,四邊形ABCD為平行四邊形,四邊形BCC1B1為等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.

(1)求證:BC1⊥平面ACC1;
(2)求直線BC1與平面ADD1A1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知a>b,a=5,c=6,sinB=
(Ⅰ)求b和sinA的值;
(Ⅱ)求sin(2A+ )的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=x2+ax+b在區(qū)間[0,1]上的最大值是M,最小值是m,則M﹣m( )
A.與a有關(guān),且與b有關(guān)
B.與a有關(guān),但與b無關(guān)
C.與a無關(guān),且與b無關(guān)
D.與a無關(guān),但與b有關(guān)

查看答案和解析>>

同步練習冊答案