在等差數(shù)列{a
n}中,a
n=
n-
,求數(shù)列{|a
n|﹜的前n項(xiàng)和T
n.
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)n≤7時,Tn=-Sn,當(dāng)n>7時,Tn=Sn-2S7.
解答:
解:在等差數(shù)列{a
n}中,a
n=
n-
,
∴
a1=-=-9,
a2=×2-=-
,d=-
+9=
,
設(shè)等差數(shù)列{a
n}的前n項(xiàng)和為S
n,
由a
n=
n-
≥0,得n≥7.
∴當(dāng)n≤7時,T
n=-S
n=-[-9n+
×]=9n-
=
.
當(dāng)n>7時,T
n=S
n-2S
7=
+252.
∴T
n=
.
點(diǎn)評:本題考查數(shù)列的各項(xiàng)的絕對值的前n項(xiàng)和的求法,是中檔題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
若存在正實(shí)數(shù)M,對于任意x∈(1,+∞),都有|f(x)|≤M,則稱函數(shù)f(x)在(1,+∞)上是有界函數(shù).下列函數(shù):①f(x)=
;②f(x)=
;③f(x)=
;④f(x)=xsinx,其中“在(1,+∞)上是有界函數(shù)”的序號為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)f(x)=xsinx+cosx的導(dǎo)函數(shù)原點(diǎn)處的部分圖象大致為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)f(x)=x3-3x2+5的單調(diào)減區(qū)間是( 。
A、(0,2) |
B、(0,3) |
C、(0,1) |
D、(0,5) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,四邊形ABCD為正方形,PA⊥平面ABCD,且AD=2PA,E、F、G、H分別是線段PA、PD、CD、BC的中點(diǎn).
(Ⅰ)求證:BC∥平面EFG;
(Ⅱ)求證:DH⊥平面AEG.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
數(shù)列{an}、{bn}中,an=3n-1,bn=4n+2,設(shè)數(shù)列{an}和數(shù)列{bn}的公共項(xiàng)組成數(shù)列{cn},求數(shù)列{cn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,E,F(xiàn)分別為PA,BD中點(diǎn),PA=PD=AD=2.
(Ⅰ)求證:EF∥平面PBC;
(Ⅱ)求二面角E-DF-A的余弦值;
(Ⅲ)在棱PC上是否存在一點(diǎn)G,使GF⊥平面EDF?若存在,指出點(diǎn)G的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}中,a
1=1,a
n+1=
.
(Ⅰ)求{a
n}的通項(xiàng)公式;
(Ⅱ)證明:對一切正整數(shù)n,有
+
+
+…+
<
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=sinx+
cosx.求f(x)的最小正周期和最值.
查看答案和解析>>