(本小題滿(mǎn)分12分)
已知等差數(shù)列{}的前n項(xiàng)和為Sn,且
(1)求通項(xiàng);
(2)求數(shù)列{}的前n項(xiàng)和的最小值。

(1)=4n-2(2)-225.

解析試題分析:(1)由=10,=72,得
=4n-2,----------4
(2)則bn =-30=2n-31.
  
≤n≤ -------------------10    .
∵n∈N*,∴n=15.
∴{}前15項(xiàng)為負(fù)值,∴最小,---------------12
可知=-29,d=2,∴=-225.----------------------12
考點(diǎn):本題考查了數(shù)列的通項(xiàng)及前n項(xiàng)和的性質(zhì)
點(diǎn)評(píng):等差數(shù)列的通項(xiàng)公式可化為,是關(guān)于的一次函數(shù),當(dāng)時(shí)為減函數(shù)且有最大值,取得最大值時(shí)的項(xiàng)數(shù)可由來(lái)確定;當(dāng)時(shí)為增函數(shù)且有最小值,取得最小值時(shí)的項(xiàng)數(shù)可由來(lái)確定.關(guān)鍵是要確定符號(hào)的轉(zhuǎn)折點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列
(1)觀察規(guī)律,寫(xiě)出數(shù)列的通項(xiàng)公式,它是個(gè)什么數(shù)列?
(2)若,設(shè) ,求。
(3)設(shè),為數(shù)列的前項(xiàng)和,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿(mǎn)足,
(I) 求數(shù)列的通項(xiàng)公式;
(II) 求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等差數(shù)列中,成等比數(shù)列,求數(shù)列前20項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知 是等差數(shù)列,是公比為的等比數(shù)列,,記為數(shù)列的前項(xiàng)和,
(1)若是大于的正整數(shù),求證:;
(2)若是某一正整數(shù),求證:是整數(shù),且數(shù)列中每一項(xiàng)都是數(shù)列中的項(xiàng);
(3)是否存在這樣的正數(shù),使等比數(shù)列中有三項(xiàng)成等差數(shù)列?若存在,寫(xiě)出一個(gè)的值,并加以說(shuō)明;若不存在,請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)  
已知數(shù)列的各項(xiàng)排成如圖所示的三角形數(shù)陣,數(shù)陣中每一行的第一個(gè)數(shù)構(gòu)成等差數(shù)列,的前n項(xiàng)和,且

( I )若數(shù)陣中從第三行開(kāi)始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,已知,求的值;
(Ⅱ)設(shè),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是公差不為零的等差數(shù)列,,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng);      
(2)記,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)在數(shù)列中, ,
(Ⅰ)證明數(shù)列是等比數(shù)列;
(II)求數(shù)列的前項(xiàng)和
(Ⅲ)證明對(duì)任意,不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且 2a1 +3a2 =1, =9a2a6
(Ⅰ) 求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) bn=log3a1 +log3a2 ++ log3an,求的前n項(xiàng)和Tn;
(Ⅲ)在(Ⅱ)的條件下,求使  ≥ (7? 2n)Tn恒成立的實(shí)數(shù)k 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案