【題目】2020年春節(jié)期間,武漢市爆發(fā)了新型冠狀病毒肺炎疫情,在黨中央的堅強領(lǐng)導下,全國人民團結(jié)一心,眾志成城,共同抗擊疫情.某中學寒假開學后,為了普及傳染病知識,增強學生的防范意識,提高自身保護能力,校委會在全校學生范圍內(nèi),組織了一次傳染病及個人衛(wèi)生相關(guān)知識有獎競賽(滿分100),競賽獎勵規(guī)則如下,得分在內(nèi)的學生獲三等獎,得分在內(nèi)的學生獲二等獎,得分在內(nèi)的學生獲一等獎,其他學生不得獎.教務(wù)處為了解學生對相關(guān)知識的掌握情況,隨機抽取了100名學生的競賽成績,并以此為樣本繪制了如下樣本頻率分布直方圖.

1)現(xiàn)從該樣本中隨機抽取兩名學生的競賽成績,求這兩名學生中恰有一名學生獲獎的概率;

2)若該校所有參賽學生的成績近似服從正態(tài)分布,其中為樣本平均數(shù)的估計值,利用所得正態(tài)分布模型解決以下問題:

(i)若該校共有10000名學生參加了競賽,試估計參賽學生中成績超過79分的學生數(shù)(結(jié)果四舍五入到整數(shù));

(ii)若從所有參賽學生中(參賽學生數(shù)大于10000)隨機抽取3名學生進行座談,設(shè)其中競賽成績在64分以上的學生數(shù)為,求隨機變量的分布列和均值.

附:若隨機變量服從正態(tài)分布,則,.

【答案】12(i)(ii)詳見解析

【解析】

1)由樣本頻率分布直方圖得,有30人獲獎,70人沒有獲獎,設(shè)抽取的兩名學生中恰有一名學生獲獎為事件,利用組合數(shù)公式求出總的基本事件數(shù)和事件包含的基本事件數(shù),代入古典概型概率計算公式即可求解;

2)利用頻率分布直方圖中的數(shù)據(jù),代入平均數(shù)公式求出平均數(shù)的估計值,利用正態(tài)分布曲線的對稱性求出的概率,即可估計參賽學生中成績超過79分的學生數(shù);利用正態(tài)分布的性質(zhì)和二項分布的概率和期望公式求出隨機變量的分布列和均值即可.

1)由樣本頻率分布直方圖得,樣本中獲一等獎的6人,獲二等獎的8人,

獲三等獎的16人,所以有30人獲獎,70人沒有獲獎,

從該樣本中隨機抽取兩名學生的競賽成績,基本事件總數(shù)為,

設(shè)抽取的兩名學生中恰有一名學生獲獎為事件

則事件包含的基本事件的個數(shù)為,

由古典概型概率計算公式可得,,

所以抽取的兩名學生中恰有一名學生獲獎的概率.

2)由樣本頻率分布直方圖得樣本平均數(shù)的估計值,所有參賽學生的成績近似服從正態(tài)分布.

i)因為,所以

參賽學生中成績超過79分的學生數(shù)約為.

(ⅱ)由,得,即從所有參賽學生中隨機抽取1名學生,競賽成績在64分以上的概率為,所以隨機變量服從二項分布.

隨機變量的所有可能取得的值為0,1,2,3.

,

,

,

隨機變量的分布列為

0

1

2

3

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),曲線在點處的切線斜率為.

1)證明:有且只有一個零點.

2)當時,恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐的底面是菱形,平面,,與平面所成的角為,點的中點.

1)求證:平面平面;

2)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,曲線的參數(shù)方程為為參數(shù),且.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程和曲線的直角坐標方程;

2)已知點P的極坐標為,Q為曲線上的動點,求的中點M到曲線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若雙曲線的實軸長為6,焦距為10,右焦點為,則下列結(jié)論正確的是(

A.的漸近線上的點到距離的最小值為4B.的離心率為

C.上的點到距離的最小值為2D.的最短的弦長為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸的非負半軸為極軸,建立極坐標系,并在兩種坐標系中取相同的長度單位.已知圓和圓的極坐標方程分別是.

1)求圓和圓的公共弦所在直線的直角坐標方程;

2)若射線與圓的交點為O、P,與圓的交點為O、Q,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是正方體的棱的中點,下列命題中真命題是( )

A.點有且只有一條直線與直線都相交

B.點有且只有一條直線與直線都垂直

C.點有且只有一個平面與直線都相交

D.點有且只有一個平面與直線都平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在多面體中,平面,,點上,點的中點,且,且.

(Ⅰ)證明:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020322日是第二十八屆“世界水日”322-28日是第三十三屆“中國水周”,主題為“堅持節(jié)水優(yōu)先,建設(shè)幸福河湖”,效仿階梯電價,某市準備實施階梯水價.階梯水價原則上以一套住宅(一套住宅為一戶)的月用水量為基準,具體劃分階梯如下:

梯類

第一階梯

第二階梯

第三階梯

月用水量范圍(立方米)

從本市居民用戶中隨機抽取10戶,并統(tǒng)計了在同一個月份的月用水量,得到如圖所示的莖葉圖

1)若從這10戶中任意抽取三戶,求取到第二階梯用戶數(shù)的分布列和數(shù)學期望;

2)用以上樣本估計全市的居民用水情況,現(xiàn)從全市隨機抽取10戶,則抽到多少戶為第二階梯用戶的可能性最大?

查看答案和解析>>

同步練習冊答案