已知冪函數(shù)為偶函數(shù).
(1)求的解析式;
(2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
(1) ;(2) 或.
解析試題分析:(1)因?yàn)槭莾绾瘮?shù),所以 ,得出的值,在代入,看是否是偶函數(shù);(2)將(1)的結(jié)果代入(2)式,函數(shù)在為單調(diào)函數(shù),即在對稱軸的某一側(cè),從而求出的取值范圍.
試題解析:解:(1)由為冪函數(shù)知,得 或 3分
當(dāng)時,,符合題意;當(dāng)時,,不合題意,舍去.
∴. 6分
(2)由(1)得,
即函數(shù)的對稱軸為, 8分
由題意知在(2,3)上為單調(diào)函數(shù),
所以或, 11分
即或. 12分
考點(diǎn):1.冪函數(shù)的定義;2.二次函數(shù)的單調(diào)性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)常數(shù))滿足.
(1)求出的值,并就常數(shù)的不同取值討論函數(shù)奇偶性;
(2)若在區(qū)間上單調(diào)遞減,求的最小值;
(3)在(2)的條件下,當(dāng)取最小值時,證明:恰有一個零點(diǎn)且存在遞增的正整數(shù)數(shù)列,使得成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點(diǎn)為圓心的兩個同心圓弧、弧以及兩條線段和圍成的封閉圖形.花壇設(shè)計周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在對花壇的邊緣進(jìn)行裝飾時,已知兩條線段的裝飾費(fèi)用為4元/米,兩條弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,當(dāng)為何值時,取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù),若在定義域存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在R上的函數(shù)滿足,當(dāng)時,
,且.
(1)求的值;
(2)當(dāng)時,關(guān)于的方程有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,過濾過程中廢氣的污染物數(shù)量與時間小時間的關(guān)系為.如果在前個小時消除了的污染物,試求:
(1)個小時后還剩百分之幾的污染物?
(2)污染物減少所需要的時間.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲廠以x千克/小時的速度運(yùn)輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得利潤是100(5x+1-)元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=lg(ax-bx)(a>1>b>0).
(1)求函數(shù)y=f(x)的定義域;
(2)在函數(shù)y=f(x)的圖象上是否存在不同的兩點(diǎn),使過此兩點(diǎn)的直線平行于x軸;
(3)當(dāng)a、b滿足什么關(guān)系時,f(x)在區(qū)間上恒取正值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的函數(shù)及二次函數(shù)滿足:且。
(1)求和的解析式;
(2);
(3)設(shè),討論方程的解的個數(shù)情況.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com