(2013•朝陽區(qū)二模)若直線l與圓x2+(y+1)2=4相交于A,B兩點,且線段AB的中點坐標是(1,-2),則直線l的方程為
x-y-3=0
x-y-3=0
分析:設(shè)圓心為C,AB的中點為D,由直線和圓相交的性質(zhì)可得,直線l⊥CD,求出直線l的斜率為
-1
KCD
 的值,再用點斜式求得直線l的方程.
解答:解:設(shè)圓C:x2+(y+1)2=4的圓心C(0,-1),弦AB的中點坐標是D(1,-2),
由直線和圓相交的性質(zhì)可得 直線l⊥CD,∴直線l的斜率為
-1
KCD
=
-1
-2-(-1)
1-0
=1,
故直線l的方程為 y+2=x-1,即 x-y-3=0,
故答案為 x-y-3=0.
點評:本題主要考查直線和圓相交的性質(zhì),用點斜式求直線的方程,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)為了解某市今年初二年級男生的身體素質(zhì)狀況,從該市初二年級男生中抽取了一部分學生進行“擲實心球”的項目測試.成績低于6米為不合格,成績在6至8米(含6米不含8米)的為及格,成績在8米至12米(含8米和12米,假定該市初二學生擲實心球均不超過12米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成[2,4),[4,6),[6,8),[8,10),[10,12]五組,畫出的頻率分布直方圖如圖所示.已知有4名學生的成績在10米到12米之間.
(Ⅰ)求實數(shù)a的值及參加“擲實心球”項目測試的人數(shù);
(Ⅱ)根據(jù)此次測試成績的結(jié)果,試估計從該市初二年級男生中任意選取一人,“擲實心球”成績?yōu)閮?yōu)秀的概率;
(Ⅲ)若從此次測試成績不合格的男生中隨機抽取2名學生再進行其它項目的測試,求所抽取的2名學生來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)已知等差數(shù)列{an}的公差為-2,a3是a1與a4的等比中項,則首項a1=
8
8
,前n項和Sn=
-n2+9n
-n2+9n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)已知函數(shù)f(x)=a•2|x|+1(a≠0),定義函數(shù)F(x)=
f(x),x>0
-f(x),x<0
給出下列命題:
①F(x)=|f(x)|; 
②函數(shù)F(x)是奇函數(shù);
③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,
其中所有正確命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)點P是棱長為1的正方體ABCD-A1B1C1D1的底面A1B1C1D1上一點,則
PA
PC1
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)在△ABC中,角A,B,C所對的邊分別為a,b,c,且f(A)=2cos
A
2
sin(π-
A
2
)
+sin2
A
2
-cos2
A
2

(Ⅰ)求函數(shù)f(A)的最大值;
(Ⅱ)若f(A)=0,C=
12
,a=
6
,求b的值.

查看答案和解析>>

同步練習冊答案