【題目】已知函數(shù)f(x)是定義在(0)∪(0,+∞)上的偶函數(shù),當(dāng)x>0時(shí),f(x)lnxax,若函數(shù)在定義域上有且僅有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )

A.(e,+∞)B.(0)

C.(1,)D.(,)

【答案】B

【解析】

由于函數(shù)f(x)是定義在(,0)∪(0,+∞)上的偶函數(shù),所以其圖象關(guān)于y軸對(duì)稱,所以只要考慮當(dāng)x>0時(shí),f(x)lnxax有且僅有2個(gè)不同的零點(diǎn)即可,由于f′(x)a,當(dāng)f′(x)a0時(shí),x(x>0),所以a>0,當(dāng)x∈(0,)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增,當(dāng)x∈(,+∞)時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減,所以當(dāng)x時(shí),f(x)maxf()ln1,要使x>0時(shí),f(x)lnxax有且僅有2個(gè)不同的零點(diǎn),只需f()ln1>0,解得0<a<.故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)為α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

1)寫出曲線C的普通方程和直線l的參數(shù)方程;

2)設(shè)點(diǎn)Pm,0),若直線l與曲線C相交于A,B兩點(diǎn),且|PA||PB|1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,是棱的中點(diǎn),是側(cè)面內(nèi)的動(dòng)點(diǎn),且平面,則與平面所成角的正切值構(gòu)成的集合是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018614日,世界杯足球賽在俄羅斯拉開帷幕,世界杯給俄羅斯經(jīng)濟(jì)帶來了一定的增長,某紀(jì)念商品店的銷售人員為了統(tǒng)計(jì)世界杯足球賽期間商品的銷售情況,隨機(jī)抽查了該商品商店某天200名顧客的消費(fèi)金額情況,得到如圖頻率分布表:將消費(fèi)顧客超過4萬盧布的顧客定義為足球迷”,消費(fèi)金額不超過4萬盧布的顧客定義為“非足球迷”。

消費(fèi)金額/萬盧布

合計(jì)

顧客人數(shù)

9

31

36

44

62

18

200

(1)求這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)(同一組中的消費(fèi)金額用該組的中點(diǎn)值作代表;

(2)該紀(jì)念品商店的銷售人員為了進(jìn)一步了解這200名顧客喜歡紀(jì)念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再從這5人中隨機(jī)選取3人進(jìn)行問卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)上的最小值和最大值;

2)當(dāng)時(shí),討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車零件加工廠為迎接國慶大促銷活動(dòng)預(yù)估國慶七天銷售量,該廠工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示,將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.

1)根據(jù)頻率分布直方圖估計(jì)該廠的日平均銷售量;(每組以中點(diǎn)值為代表)

2)求未來天內(nèi),連續(xù)天日銷售量不低于噸,另一天日銷售量低于噸的概率;

3)用表示未來天內(nèi)日銷售量不低于噸的天數(shù),求隨機(jī)變量的分布列、數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】最近幾年汽車金融公司發(fā)展迅猛,主要受益于監(jiān)管層面對(duì)消費(fèi)進(jìn)人門檻的降低,互聯(lián)網(wǎng)信貸消費(fèi)的推廣普及,以及汽車銷售市場規(guī)模的擴(kuò)張.如圖是20132017年汽車金融行業(yè)資產(chǎn)規(guī)模統(tǒng)計(jì)圖(單位:億元).

1)以年份值2013,2014,為橫坐標(biāo),汽車金融行業(yè)資產(chǎn)規(guī)模(單位:億元)為縱坐標(biāo),求y關(guān)于x的線性回歸方程;

2)利用(1)中的回歸方程,預(yù)計(jì)2018年汽車金融行業(yè)資產(chǎn)規(guī)模(精確到億元).

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,(其中,為樣本平均值).

參考數(shù)據(jù):4.620×10720154.619×107.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求fx)的最小正周期T[0,π]上的單調(diào)增區(qū)間;

2)若,求fx)的最值及取最值時(shí)的x.

查看答案和解析>>

同步練習(xí)冊(cè)答案