【題目】已知橢圓的左、右焦點(diǎn)分別為,,其焦距為,點(diǎn)E為橢圓的上頂點(diǎn),且.
(1)求橢圓C的方程;
(2)設(shè)圓的切線(xiàn)l交橢圓C于A,B兩點(diǎn)(O為坐標(biāo)原點(diǎn)),求證;
(3)在(2)的條件下,求的最大值.
【答案】(1);(2)證明見(jiàn)解析;(3).
【解析】
(1)由焦距可求出,由,可求出,,進(jìn)而得到橢圓方程;
(2)當(dāng)切線(xiàn)與軸垂直時(shí),求出焦點(diǎn)坐標(biāo),進(jìn)而證得;當(dāng)切線(xiàn)與軸不垂直時(shí),設(shè)切線(xiàn)方程,聯(lián)立切線(xiàn)方程與橢圓方程,列韋達(dá)定理,利用,即可證明;
(3)當(dāng)切線(xiàn)與軸垂直時(shí),;當(dāng)切線(xiàn)與軸不垂直時(shí),由、韋達(dá)定理以及弦長(zhǎng)公式,可求出,借助基本不等式即可求出的最大值.
(1)由題意知,又,∴,∴,,
橢圓的方程為.
(2)(ⅰ)當(dāng)切線(xiàn)與軸垂直時(shí),
交點(diǎn)坐標(biāo)為,,;
(ⅱ)當(dāng)切線(xiàn)與軸不垂直時(shí),
設(shè)切線(xiàn)為,,,
由圓心到直線(xiàn)距離為,,
聯(lián)立直線(xiàn)方程與橢圓方程,得,
,,
,
.
(3)當(dāng)切線(xiàn)與軸垂直時(shí),;
當(dāng)切線(xiàn)與軸不垂直時(shí),由(2)知,,
∵,
令,則,
當(dāng)且僅當(dāng)時(shí)等號(hào)成立,.
綜上所述,的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春節(jié)期間,全國(guó)人民都在抗擊“新型冠狀病毒肺炎”的斗爭(zhēng)中.當(dāng)時(shí)武漢多家醫(yī)院的醫(yī)用防護(hù)物資庫(kù)存不足,某醫(yī)院甚至面臨斷貨危機(jī),南昌某生產(chǎn)商現(xiàn)有一批庫(kù)存的醫(yī)用防護(hù)物資,得知消息后,立即決定無(wú)償捐贈(zèng)這批醫(yī)用防護(hù)物資,需要用A、B兩輛汽車(chē)把物資從南昌緊急運(yùn)至武漢.已知從南昌到武漢有兩條合適路線(xiàn)選擇,且選擇兩條路線(xiàn)所用的時(shí)間互不影響.據(jù)調(diào)查統(tǒng)計(jì)2000輛汽車(chē),通過(guò)這兩條路線(xiàn)從南昌到武漢所用時(shí)間的頻數(shù)分布表如下:
所用的時(shí)間(單位:小時(shí)) | ||||
路線(xiàn)1的頻數(shù) | 200 | 400 | 200 | 200 |
路線(xiàn)2的頻數(shù) | 100 | 400 | 400 | 100 |
假設(shè)汽車(chē)A只能在約定交貨時(shí)間的前5小時(shí)出發(fā),汽車(chē)B只能在約定交貨時(shí)間的前6小時(shí)出發(fā)(將頻率視為概率).為最大可能在約定時(shí)間送達(dá)這批物資,來(lái)確定這兩車(chē)的路線(xiàn).
(1)汽車(chē)A和汽車(chē)B應(yīng)如何選擇各自的路線(xiàn).
(2)若路線(xiàn)1、路線(xiàn)2的“一次性費(fèi)用”分別為3.2萬(wàn)元、1.6萬(wàn)元,且每車(chē)醫(yī)用物資生產(chǎn)成本為40萬(wàn)元(其他費(fèi)用忽略不計(jì)),以上費(fèi)用均由生產(chǎn)商承擔(dān),作為援助金額的一部分.根據(jù)這兩輛車(chē)到達(dá)時(shí)間分別計(jì)分,具體規(guī)則如下(已知兩輛車(chē)到達(dá)時(shí)間相互獨(dú)立,互不影響):
到達(dá)時(shí)間與約定時(shí)間的差x(單位:小時(shí)) | |||
該車(chē)得分 | 0 | 1 | 2 |
生產(chǎn)商準(zhǔn)備根據(jù)運(yùn)輸車(chē)得分情況給出現(xiàn)金排款,兩車(chē)得分和為0,捐款40萬(wàn)元,兩車(chē)得分和每增加1分,捐款增加20萬(wàn)元,若汽車(chē)A、B用(1)中所選的路線(xiàn)運(yùn)輸物資,記該生產(chǎn)商在此次援助活動(dòng)中援助總額為Y(萬(wàn)元),求隨機(jī)變量Y的期望值,(援助總額一次性費(fèi)用生產(chǎn)成本現(xiàn)金捐款總額)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,圖中直棱柱的底面是菱形,其中.又點(diǎn)分別在棱上運(yùn)動(dòng),且滿(mǎn)足:,.
(1)求證:四點(diǎn)共面,并證明∥平面.
(2)是否存在點(diǎn)使得二面角的余弦值為?如果存在,求出的長(zhǎng);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進(jìn)的次數(shù)之和不少于次稱(chēng)為“優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進(jìn)的概率分別為.
(1)若,,則在第一輪游戲他們獲“優(yōu)秀小組”的概率;
(2)若則游戲中小明小亮小組要想獲得“優(yōu)秀小組”次數(shù)為次,則理論上至少要進(jìn)行多少輪游戲才行?并求此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的四個(gè)頂點(diǎn)圍成的菱形的面積為,橢圓的一個(gè)焦點(diǎn)為.
(1)求橢圓的方程;
(2)若,為橢圓上的兩個(gè)動(dòng)點(diǎn),直線(xiàn),的斜率分別為,,當(dāng)時(shí),的面積是否為定值?若為定值,求出此定值;若不為定值,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)和圓,傾斜角為45°的直線(xiàn)過(guò)拋物線(xiàn)的焦點(diǎn),且與圓相切.
(1)求的值;
(2)動(dòng)點(diǎn)在拋物線(xiàn)的準(zhǔn)線(xiàn)上,動(dòng)點(diǎn)在上,若在點(diǎn)處的切線(xiàn)交軸于點(diǎn),設(shè).求證點(diǎn)在定直線(xiàn)上,并求該定直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)當(dāng)a=-1時(shí),
①求曲線(xiàn)y= f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程;
②求函數(shù)f(x)的最小值;
(II)求證:當(dāng)時(shí),曲線(xiàn)與有且只有一個(gè)交點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com