【題目】設數(shù)列{an}滿足:a1=1,an+1=3an , n∈N* . 設Sn為數(shù)列{bn}的前n項和,已知b1≠0,2bn﹣b1=S1Sn , n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設cn=bnlog3an , 求數(shù)列{cn}的前n項和Tn;
(Ⅲ)證明:對任意n∈N*且n≥2,有 + +…+ < .
【答案】解:(Ⅰ)∵an+1=3an,∴{an}是公比為3,首項a1=1的等比數(shù)列,
∴通項公式為an=3n﹣1.
∵2bn﹣b1=S1Sn,∴當n=1時,2b1﹣b1=S1S1,
∵S1=b1,b1≠0,∴b1=1.
∴當n>1時,bn=Sn﹣Sn﹣1=2bn﹣2bn﹣1,∴bn=2bn﹣1,
∴{bn}是公比為2,首項a1=1的等比數(shù)列,
∴通項公式為bn=2n﹣1.
(Ⅱ)cn=bnlog3an=2n﹣1log33n﹣1=(n﹣1)2n﹣1,
Tn=020+121+222+…+(n﹣2)2n﹣2+(n﹣1)2n﹣1…①
2Tn=021+122+223+…+(n﹣2)2n﹣1+(n﹣1)2n…②
①﹣②得:﹣Tn=020+21+22+23+…+2n﹣1﹣(n﹣1)2n
=2n﹣2﹣(n﹣1)2n=﹣2﹣(n﹣2)2n
∴Tn=(n﹣2)2n+2.
(Ⅲ) = = = ≤ + + +…+
< + +…+ =
= (1﹣ )<
【解析】(Ⅰ)判斷an}是等比數(shù)列,求出通項公式,判斷{bn}是等比數(shù)列,求出通項公式為bn.(Ⅱ)化簡cn的表達式,利用錯位相減法求解Tn即可.(Ⅲ)化簡 并利用放縮法,通過數(shù)列求和證明即可.
【考點精析】認真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關系).
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(m,cos2x), =(sin2x,n),設函數(shù)f(x)= ,且y=f(x)的圖象過點( , )和點( ,﹣2).
(Ⅰ)求m,n的值;
(Ⅱ)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點到點(0,3)的距離的最小值為1,求y=g(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+x2(a為實常數(shù)).
(Ⅰ)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f(x)在[1,e]上的最小值及相應的x值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數(shù)方程為 (其中t為參數(shù)).現(xiàn)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=6cosθ.
(Ⅰ) 寫出直線l普通方程和曲線C的直角坐標方程;
(Ⅱ) 過點M(﹣1,0)且與直線l平行的直線l1交C于A,B兩點,求|AB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將三顆骰子各擲一次,記事件A=“三個點數(shù)都不同”,B=“至少出現(xiàn)一個6點”,則條件概率P(A|B),P(B|A)分別是( )
A. ,
B. ,
C. ,
D. ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ax2﹣ex,a∈R.
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)試確定a的取值范圍,使得曲線y=f(x)上存在唯一的點P,曲線在該點處的切線與曲線只有一個公共點P.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個均值點.例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點.若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義域為(0,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,則實數(shù)a的取值范圍是( )
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com