已知雙曲線-=1(a>0,b>0)的一條漸近線方程是y=x,它的一個(gè)焦點(diǎn)在拋物線y2=48x的準(zhǔn)線上.則雙曲線的方程為( )
A.-=1 B.-=1
C.-=1 D.-=1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓的半徑為2,圓心在x軸的正半軸上,且與直線3x+4y+4=0相切,則圓的方程是( )
A.x2+y2-4x=0 B.x2+y2+4x=0
C.x2+y2-2x-3=0 D.x2+y2+2x-3=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)滿足:①對(duì)任意實(shí)數(shù)都有;②對(duì)任意,有;③不恒為0,且當(dāng)時(shí),。
(1)求,的值;
(2)判斷的奇偶性,并給出你的證明;
(3)定義:“若存在非零常數(shù)T,使得對(duì)函數(shù)定義域中的任意一個(gè),均有,則稱為以T為周期的周期函數(shù)”。試證明:函數(shù)為周期函數(shù),并求出
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C:+=1(a>b>0)的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)在的三角形的面積為.
(1)求橢圓C的方程;
(2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A、B兩點(diǎn).
①若線段AB中點(diǎn)的橫坐標(biāo)為-,求斜率k的值;
②若點(diǎn)M(-,0),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知?jiǎng)訄A過(guò)定點(diǎn)A(4,0),且在y軸上截得弦長(zhǎng)MN的長(zhǎng)為8.
(1)求動(dòng)圓圓心的軌跡C的方程;
(2)已知點(diǎn)B(-1,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P,Q,若x軸是∠PBQ的角平分線,證明直線l過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)F1,F2分別是雙曲線-=1(a>0,b>0)的左、右焦點(diǎn),若雙曲線的右支上存在一點(diǎn)P,使=0,且△F1PF2的三邊長(zhǎng)構(gòu)成等差數(shù)列,則此雙曲線的離心率為( )
A. B.
C.2 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)曲線x2-y2=0與拋物線y2=-4x的準(zhǔn)線圍成的三角形區(qū)域(包含邊界)為D,P(x,y)為D內(nèi)的一個(gè)動(dòng)點(diǎn),則目標(biāo)函數(shù)z=x-2y+5的最大值為( )
A.4 B.5
C.8 D.12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com