【題目】某跨國飲料公司在對全世界所有人均GDP(即人均純收入)在千美元的地區(qū)銷售該公司A飲料的情況調(diào)查時(shí)發(fā)現(xiàn):該飲料在人均GDP處于中等的地區(qū)銷售量最多,然后向兩邊遞減.
(1)下列幾個(gè)模擬函數(shù):①;②;③;④(x表示人均GDP,單位:千美元,y表示年人均A飲料的銷售量,單位:L).用哪個(gè)模擬函數(shù)來描述人均A飲料銷售量與地區(qū)的人均GDP關(guān)系更合適?說明理由;
(2)若人均GDP為1千美元時(shí),年人均A飲料的銷售量為,人均為4千美元時(shí),年人均A飲料的銷售量為,把(1)中你所選的模擬函數(shù)求出來,并求出各個(gè)地區(qū)年人均A飲料的銷售量最多是多少.
【答案】(1) 用①來模擬比較合適,見解析(2) .
【解析】
(1)根據(jù)該飲料在人均GDP處于中等的地區(qū)銷售量最多,然后向兩邊遞減結(jié)合幾個(gè)函數(shù)的增長特征即可得出答案.
(2)將、代入解析式,利用待定系數(shù)法即可求解.
解: (1)用①來模擬比較合適.因?yàn)樵擄嬃显谌司?/span>處于中等的地區(qū)銷售量最多,
然后向兩邊遞減,而②③④表示的函數(shù)均是單調(diào)函數(shù),所以②③④都不合適,
故用①來模擬比較合適.
(2)因?yàn)槿司?/span>為1千美元時(shí),年人均A飲料的銷售量為,
人均為4千美元時(shí),年人均A飲料的銷售量為,所以把,;
,代入中,得
解得所以函數(shù)的解析式為.
因?yàn)?/span>,
所以當(dāng)時(shí),年人均A飲料的銷售量最多,最多是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校運(yùn)動會的立定跳遠(yuǎn)和30秒跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為10名學(xué)生的預(yù)賽成績,其中有三個(gè)數(shù)據(jù)模糊.
學(xué)生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(yuǎn)(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則
(A)2號學(xué)生進(jìn)入30秒跳繩決賽
(B)5號學(xué)生進(jìn)入30秒跳繩決賽
(C)8號學(xué)生進(jìn)入30秒跳繩決賽
(D)9號學(xué)生進(jìn)入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù).
(Ⅰ)求的最小值及取得最小值時(shí)的取值范圍;
(Ⅱ)若集合,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)滿足,的虛部為2,
(1)求復(fù)數(shù);
(2)設(shè)在復(fù)平面上對應(yīng)點(diǎn)分別為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),點(diǎn)在橢圓短軸上,且.
(1)求橢圓的方程;
(2)設(shè)為橢圓上的一個(gè)不在軸上的動點(diǎn),為坐標(biāo)原點(diǎn),過橢圓的右焦點(diǎn)作的平行線,交曲線于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于兩點(diǎn),若,則( )
A. B. 8 C. 16 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)記的最大值為,若且,求證:;
(3)若,記集合中的最小元素為,設(shè)函數(shù),求證:是的極小值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500元.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
記x表示1臺機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺機(jī)器在購買易損零件上所需的費(fèi)用(單位:元), 表示購機(jī)的同時(shí)購買的易損零件數(shù).
(Ⅰ)若=19,求y與x的函數(shù)解析式;
(Ⅱ)若要求“需更換的易損零件數(shù)不大于”的頻率不小于0.5,求的最小值;
(Ⅲ)假設(shè)這100臺機(jī)器在購機(jī)的同時(shí)每臺都購買19個(gè)易損零件,或每臺都購買20個(gè)易損零件,分別計(jì)算這100臺機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺機(jī)器的同時(shí)應(yīng)購買19個(gè)還是20個(gè)易損零件?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水受日月的引力,在一定的時(shí)候發(fā)生漲落的現(xiàn)象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時(shí)駛進(jìn)航道,靠近碼頭;卸貨后,在落潮時(shí)返回海洋.下面是某港口在某季節(jié)某天時(shí)間與水深(單位:米)的關(guān)系表:
時(shí)刻 | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
水深 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
(1)請用一個(gè)函數(shù)近似地描述這個(gè)港口的水深y與時(shí)間t的函數(shù)關(guān)系;
(2)一般情況下,船舶航行時(shí),船底離海底的距離為5米或5米以上認(rèn)為是安全的(船舶?繒r(shí),船底只要不碰海底即可).某船吃水深度(船底離地面的距離)為6.5米.
①如果該船是旅游船,1:00進(jìn)港,希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長時(shí)間(忽略進(jìn)出港所需時(shí)間)?
②如果該船是貨船,在2:00開始卸貨,吃水深度以每小時(shí)0.5米的速度減少,由于臺風(fēng)等天氣原因該船必須在10:00之前離開該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點(diǎn)時(shí)刻必須停止卸貨(忽略出港所需時(shí)間)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com