【題目】口袋中有大小、形狀、質(zhì)地相同的兩個(gè)白球和三個(gè)黑球.現(xiàn)有一抽獎(jiǎng)游戲規(guī)則如下:抽獎(jiǎng)?wù)呙看斡蟹呕氐膹目诖须S機(jī)取出一個(gè)球,最多取球2n1(n)次.若取出白球的累計(jì)次數(shù)達(dá)到n1時(shí),則終止取球且獲獎(jiǎng),其它情況均不獲獎(jiǎng).記獲獎(jiǎng)概率為

1)求

2)證明:

【答案】1;(2)見(jiàn)解析

【解析】

1)分別求出每次取出的球是白球和黑球的概率,由題意知最多抽3次,獲獎(jiǎng)即連續(xù)兩次為白球或者前兩次中有一次是白球第三次也是白球,求出其概率和即可;

2)依據(jù)取出白球次數(shù)是,可分為以下情況:前n次取出n次白球,第n+1次取出的是白球,前n+1次取出n次白球,第n+2次取出的是白球,,前2n次取出n次白球,第2n+1次取出的是白球,分別求出對(duì)應(yīng)的概率,相加可得,通過(guò)作差結(jié)合組合數(shù)性質(zhì)即可得結(jié)果.

1)根據(jù)題意,每次取出的球是白球的概率為,取出的球是黑球的概率為,

所以

2)證明:累計(jì)取出白球次數(shù)是的情況有:

n次取出n次白球,第n+1次取出的是白球,概率為

n+1次取出n次白球,第n+2次取出的是白球,概率為

2n1次取出n次白球,第2n次取出的是白球,概率為

2n次取出n次白球,第2n+1次取出的是白球,概率為

因此

因?yàn)?/span>,

所以,因此

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角AB,C的對(duì)邊分別為ab,c,已知2a2bcosC+csinB

(Ⅰ)求tanB;

(Ⅱ)若CABC的面積為6,求BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρcosθ1.

1)求C1的極坐標(biāo)方程,并求C1C2交點(diǎn)的極坐標(biāo)

2)若曲線(xiàn)C3θβρ0)與C1,C2的交點(diǎn)分別為M,N,求|OM||ON|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在發(fā)生公共衛(wèi)生事件期間,有專(zhuān)業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒(méi)有發(fā)生大規(guī)模群體感染的標(biāo)志為連續(xù)10天,每天新增疑似病例不超過(guò)7”.過(guò)去10日,AB、C、D四地新增疑似病例數(shù)據(jù)信息如下:

A地:中位數(shù)為2,極差為5; B地:總體平均數(shù)為2,眾數(shù)為2

C地:總體平均數(shù)為1,總體方差大于0; D地:總體平均數(shù)為2,總體方差為3.

則以上四地中,一定符合沒(méi)有發(fā)生大規(guī)模群體感染標(biāo)志的是_______(A、B、CD)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,港口A在港口O的正東100海里處,在北偏東方向有條直線(xiàn)航道OD,航道和正東方向之間有一片以B為圓心,半徑為海里的圓形暗礁群(在這片海域行船有觸礁危險(xiǎn)),其中OB海里,tanAOB,cosAOD,現(xiàn)一艘科考船以海里/小時(shí)的速度從O出發(fā)沿OD方向行駛,經(jīng)過(guò)2個(gè)小時(shí)后,一艘快艇以50海里/小時(shí)的速度準(zhǔn)備從港口A出發(fā),并沿直線(xiàn)方向行駛與科考船恰好相遇.

1)若快艇立即出發(fā),判斷快艇是否有觸礁的危險(xiǎn),并說(shuō)明理由;

2)在無(wú)觸礁危險(xiǎn)的情況下,若快艇再等x小時(shí)出發(fā),求x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),其焦點(diǎn)到準(zhǔn)線(xiàn)的距離為2.直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),過(guò),分別作拋物線(xiàn)的切線(xiàn)交于點(diǎn).

1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;

2)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過(guò)橢圓的左、右焦點(diǎn)和短軸的端點(diǎn)(點(diǎn)在點(diǎn)上方).為圓上的動(dòng)點(diǎn)(點(diǎn)不與重合),直線(xiàn)分別與橢圓交于點(diǎn),其中點(diǎn)構(gòu)成四邊形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“克拉茨猜想”又稱(chēng)“猜想”,是德國(guó)數(shù)學(xué)家洛薩克拉茨在年世界數(shù)學(xué)家大會(huì)上公布的一個(gè)猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘,不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,最終都能夠得到,得到即終止運(yùn)算,己知正整數(shù)經(jīng)過(guò)次運(yùn)算后得到,則的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且以橢圓上的點(diǎn)和長(zhǎng)軸兩端點(diǎn)為頂點(diǎn)的三角形的面積的最大值為.

1)求橢圓的方程;

2)經(jīng)過(guò)定點(diǎn)的直線(xiàn)交橢圓于不同的兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,試證明:直線(xiàn)軸的交點(diǎn)為一個(gè)定點(diǎn),且為原點(diǎn)).

查看答案和解析>>

同步練習(xí)冊(cè)答案