【題目】已知圓過橢圓的左、右焦點和短軸的端點(點在點上方).為圓上的動點(點不與重合),直線分別與橢圓交于點,其中點構(gòu)成四邊形.
(1)求橢圓的標準方程;
(2)求四邊形面積的取值范圍.
【答案】(1);(2)
【解析】
(1)根據(jù)題意可知,再根據(jù)的關(guān)系,可求出的值,即可得到橢圓的標準方程;
(2)設(shè)出直線的方程,并將其與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系和弦長公式求出,然后求出,即可求出四邊形面積的表達式,進而求出取值范圍即可.
(1)由題意可知,則,
所以橢圓的標準方程為.
(2)因為為圓上的動點,且不與重合,所以,直線的斜率存在且不為0.
設(shè)直線,直線,
將直線的方程與橢圓的方程聯(lián)立,得,
消去并整理得,
則,
設(shè),則,
所以,
因為直線與直線平行,所以兩直線分別與橢圓相交所得的弦長相等,
用代替,可得,
所以四邊形的面積.
因為,所以,
又,當且僅當時取等號,
所以,,
即四邊形面積的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,曲線C的極坐標方程為射線交曲線C于點A,傾斜角為α的直線l過線段OA的中點B且與曲線C交于P、Q兩點.
(1)求曲線C的直角坐標方程及直線l的參數(shù)方程;
(2)當直線l傾斜角α為何值時, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標準方程;
(2)設(shè)過點的直線與橢圓相交于,兩點,若,問直線是否存在?若存在,求直線的斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】口袋中有大小、形狀、質(zhì)地相同的兩個白球和三個黑球.現(xiàn)有一抽獎游戲規(guī)則如下:抽獎?wù)呙看斡蟹呕氐膹目诖须S機取出一個球,最多取球2n+1(n)次.若取出白球的累計次數(shù)達到n+1時,則終止取球且獲獎,其它情況均不獲獎.記獲獎概率為.
(1)求;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)棱底面,底面三角形是正三角形,E是BC中點,則下列敘述正確的是( )
A.與是異面直線B.平面
C.AE,為異面直線,且D.平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,拋物線上的點到準線的最小距離為.
(1)求拋物線的方程;
(2)若過點作互相垂直的兩條直線、,與拋物線交于兩點,與拋物線交于兩點,分別為弦的中點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春季,某出租汽車公同決定更換一批新的小汽車以代替原來報廢的出租車,現(xiàn)有采購成本分別為11萬元/輛和8萬元/輛的A,B兩款車型,根據(jù)以往這兩種出租車車型的數(shù)據(jù),得到兩款出租車型使用壽命頻數(shù)表如表:
(1)填寫如表,并判斷是否有99%的把握認為出租車的使用壽命年數(shù)與汽車車有關(guān)?
(2)以頻率估計概率,從2020年生產(chǎn)的A和B的車型中各隨機抽1車,以X表示這2車中使用壽命不低于7年的車數(shù),求X的分布列和數(shù)學(xué)期望;
(3)根據(jù)公司要求,采購成本由出租公司負責(zé),平均每輛出租每年上交公司6萬元,其余維修和保險等費用自理,假設(shè)每輛出租車的使用壽命都是整數(shù)年,用頻率估計每輛出租車使用壽命的概率,分別以這100輛出租車所產(chǎn)生的平均利潤作為決策依據(jù),如果你是該公司的負責(zé)人,會選擇采購哪款車型?
參考公式:,其中n=a+b+c+d.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.每年交強險最終保險費計算方法是:交強險最終保險費,其中a為交強險基礎(chǔ)保險費,A為與道路交通事故相聯(lián)系的浮動比率,同時滿足多個浮動因素的,按照向上浮動或者向下浮動比率的高者計算.按照我國《機動車交通事故責(zé)任強制保險基礎(chǔ)費率表》的規(guī)定:普通6座以下私家車的交強險基礎(chǔ)保險費為950元,交強險費率浮動因素及比率如下表:
交強險浮動因素和浮動費率比率表 | ||
類型 | 浮動因素 | 浮動比率 |
上一個年度未發(fā)生有責(zé)任道路交通事故 | ||
上兩個年度未發(fā)生有責(zé)任道路交通事故 | ||
上三個及以上年度未發(fā)生有責(zé)任道路交通事故 | ||
上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | ||
上一個年度發(fā)生兩次及以上有責(zé)任道路交通事故 | ||
上一個年度發(fā)生有責(zé)任道路交通死亡事故 |
某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了100輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計結(jié)果如下表:
類型 | ||||||
數(shù)量 | 25 | 10 | 10 | 25 | 20 | 10 |
以這100輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題.
(1)記X為一輛該品牌車在第四年續(xù)保時的費用,求X的分布列與數(shù)學(xué)期望(數(shù)學(xué)期望值保留到個位數(shù)字);
(2)某二手車銷售商專門銷售這一品牌的二手車,且將經(jīng)銷商購車后下一年的交強險最終保險費高于交強險基礎(chǔ)保險費的車輛記為事故車,假設(shè)購進一輛事故車虧損3000元,購進一輛非事故車盈利5000元.
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有一輛是事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】區(qū)塊鏈技術(shù)被認為是繼蒸汽機、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
編號 | 1 | 2 | 3 | 4 | 5 |
企業(yè)總數(shù)量y(單位:千個) | 2.156 | 3.727 | 8.305 | 24.279 | 36.224 |
注:參考數(shù)據(jù)(其中z=lny).
附:樣本(xi,yi)(i=1,2,…,n)的最小二乘法估計公式為
(1)根據(jù)表中數(shù)據(jù)判斷,y=a+bx與y=cedx(其中e=2.71828…,為自然對數(shù)的底數(shù)),哪一個回歸方程類型適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說明理由)
(2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程(結(jié)果精確到小數(shù)點后第三位);
(3)為了促進公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進行一次信息化技術(shù)比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個公司參加,并決出勝負;②每場比賽獲勝的公司與未參加此場比賽的公司進行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結(jié)束,該公司就獲得此次信息化比賽的“優(yōu)勝公司”,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請通過計算說明,哪兩個公司進行首場比賽時,甲公司獲得“優(yōu)勝公司”的概率最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com