已知橢圓的一個(gè)焦點(diǎn)為,與兩坐標(biāo)軸正半軸分別交于A,B兩點(diǎn)(如圖),向量與向量=共線.
(1)求橢圓的方程;
(2)若斜率為k的直線過(guò)點(diǎn)C(0,2),且與橢圓交于P,Q兩點(diǎn),求△POC與△QOC面積之比的取值范圍.

【答案】分析:(1)利用向量共線,確定a,b的關(guān)系,結(jié)合橢圓的焦點(diǎn)坐標(biāo),即可求得橢圓的方程;
(2)直線方程代入橢圓方程,利用韋達(dá)定理,即可求得比值的范圍.
解答:解:(1)由向量與向量=共線,可得
∵焦點(diǎn)為,∴a2-b2=8,∴b2=8,a2=16
∴橢圓的方程為
(2)設(shè)P(x1,y1),Q(x2,y2),且x1<0,x2>0,
PQ的方程為y=kx+2,代入橢圓方程消去y,可得(2+k2)x2+4kx-12=0
∴x1+x2=-①,x1x2=-
設(shè)△POC與△QOC面積之比為λ,即
結(jié)合①②得(1-λ)x1=-,λx12=-
=

∴△POC與△QOC面積之比的取值范圍為
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)焦點(diǎn)為F,若橢圓上存在點(diǎn)P,滿足以橢圓短軸為直徑的圓與線段PF相切于線段PF的中點(diǎn),則該橢圓的離心率為(  )
A、
5
3
B、
2
3
C、
2
2
D、
5
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)焦點(diǎn)為F1(-3,0),長(zhǎng)軸長(zhǎng)為10,中心在坐標(biāo)原點(diǎn),則此橢圓的離心率為
3
5
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)焦點(diǎn)為F(1,0),離心率e=
1
2
,則橢圓的標(biāo)準(zhǔn)方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)焦點(diǎn)為(2,0),則橢圓的方程是( 。

A.                                 B.

C.                                 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省毫州市高二上學(xué)期質(zhì)量檢測(cè)文科數(shù)學(xué) 題型:選擇題

已知橢圓的一個(gè)焦點(diǎn)為(0,2)則的值為(    )

A.2      B.3      C.5       D.7

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案