已知函數(shù)
(Ⅰ)試用含的代數(shù)式表示
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)令,設(shè)函數(shù)處取得極值,記點(diǎn),證明:線段與曲線存在異于、的公共點(diǎn);

(Ⅰ);(Ⅱ)當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為R;當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為
(Ⅲ)易得,而的圖像在內(nèi)是一條連續(xù)不斷的曲線,
內(nèi)存在零點(diǎn),這表明線段與曲線有異于的公共點(diǎn)

解析試題分析:解法一:(Ⅰ)依題意,得

(Ⅱ)由(Ⅰ)得

,則
①當(dāng)時(shí),
當(dāng)變化時(shí),的變化情況如下表:






+

+

單調(diào)遞增
單調(diào)遞減
單調(diào)遞增
由此得,函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為
②由時(shí),,此時(shí),恒成立,且僅在,故函數(shù)的單調(diào)區(qū)間為R
③當(dāng)時(shí),,同理可得函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為
綜上:
當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;
當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為R;
當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為
(Ⅲ)當(dāng)時(shí),得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)在區(qū)間上的最大、最小值;
(2)求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)的零點(diǎn)的集合為{0,1},且是f(x)的一個(gè)極值點(diǎn)。
(1)求的值;
(2)試討論過(guò)點(diǎn)P(m,0)與曲線y=f(x)相切的直線的條數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù)(其中e為自然對(duì)數(shù))
(1)求F(x)="h" (x)的極值。
(2)設(shè) (常數(shù)a>0),當(dāng)x>1時(shí),求函數(shù)G(x)的單調(diào)區(qū)間,并在極值存在處求極值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)。
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求在曲線上一點(diǎn)的切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
已知函數(shù)f(x)=lnx+
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)mR,對(duì)任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma - (xo)<0成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明:ln2 l+ 1n22,+…+ln2 n>∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,有一邊長(zhǎng)為2米的正方形鋼板缺損一角(圖中的陰影部分),邊緣線是以直線為對(duì)稱(chēng)軸,以線段的中點(diǎn)為頂點(diǎn)的拋物線的一部分.工人師傅要將缺損一角切割下來(lái),使剩余的部分成為一個(gè)直角梯形.

(Ⅰ)請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求陰影部分的邊緣線的方程;
(Ⅱ)如何畫(huà)出切割路徑,使得剩余部分即直角梯形的面積最大?
并求其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
已知函數(shù).
(1)當(dāng)時(shí),求證:函數(shù)上單調(diào)遞增;
(2)若函數(shù)有三個(gè)零點(diǎn),求的值;
(3)若存在,使得,試求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù),其圖象在點(diǎn)處的切線方程為.
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間,并求出在區(qū)間上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案