18.如圖,四棱錐P-ABCD中,底面積ABCD為矩形,PA⊥平向ABCD,E為PD的中點(diǎn),AB=AP=1,AD=$\sqrt{3}$,試建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,求平面ACE的一個(gè)法向量.

分析 以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,由此能求出平面ACE的一個(gè)法向量.

解答 解:∵四棱錐P-ABCD中,底面積ABCD為矩形,
PA⊥平向ABCD,E為PD的中點(diǎn),AB=AP=1,AD=$\sqrt{3}$,
∴以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,
則A(0,0,0),C(1,$\sqrt{3}$,0),
D(0,$\sqrt{3}$,0),P(0,0,1),E(0,$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),
$\overrightarrow{AE}$=(0,$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),$\overrightarrow{AC}$=(1,$\sqrt{3}$,0),
設(shè)平面ACE的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=\frac{\sqrt{3}}{2}y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=x+\sqrt{3}y=0}\end{array}\right.$,取y=-$\sqrt{3}$,得$\overrightarrow{n}$=(3,-$\sqrt{3}$,3).
∴平面ACE的一個(gè)法向量為$\overrightarrow{n}$=(3,-$\sqrt{3}$,3).

點(diǎn)評 本題考查平面的一個(gè)法向量的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間直角坐標(biāo)系的合理建立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)是定義在R上的函數(shù),對任意的x、y∈R,都有f(x)f(y)=2f(x+y),且當(dāng)x>0時(shí),f(x)>2.
(1)求f(0)的值;
(2)證明:f(x)>0對任意x∈R恒成立;
(3)解關(guān)于θ的不等式f(tanθ)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.當(dāng)x=$\sqrt{2}$時(shí),函數(shù)f(x)=x2(4-x2)(0<x<2)取得最大值4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知變量x,y滿足條件$\left\{\begin{array}{l}{x+y≤6}\\{x-y≤2}\\{x≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=2x+y,那么z的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在區(qū)間[1,5]上,f(x)=x2-mx+4的圖象恒在y=x的圖象上方,則m的取值范圍是(-∞,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)=sinx
(1)求當(dāng)x∈[-$\frac{π}{2}$,0]時(shí),f(x)的解析式;
(2)畫出函數(shù)f(x)在[-π,π]上的函數(shù)簡圖;
(3)求當(dāng)f(x)≥$\frac{1}{2}$時(shí),x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知sin(π-θ)cosθ<0,且|cosθ|=cosθ,則角θ是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=x2-a|x-1|.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間(不要求證明);
(2)設(shè)f(x)在區(qū)間[0,2]上的最小值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若不等式$\frac{1-sinx}{2+sinx}$-m≥0對一切實(shí)數(shù)x成立,則實(shí)數(shù)m的取值范圍是m≤0.

查看答案和解析>>

同步練習(xí)冊答案