設(shè)函數(shù),函數(shù),下列說法正確的是  (  )

A.單調(diào)遞增,其圖像關(guān)于直線對稱

B. 單調(diào)遞增,其圖像關(guān)于直線對稱

C. 單調(diào)遞減,其圖像關(guān)于直線對稱

D. 單調(diào)遞減,其圖像關(guān)于直線對稱

 

【答案】

D.

【解析】解法一:.所以f(x) 在單調(diào)遞減,其圖像關(guān)于直線對稱,故選D.

解法二:直接驗證 由選項知不是遞增就是遞減,而端點值又有意義,故只需驗證端點值,知遞減,顯然不會是對稱軸故選D.

【命題意圖】本題考查三角函數(shù)圖像和性質(zhì),屬于中等題.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

關(guān)于函數(shù)的極值,下列說法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•綿陽三模)對于定義在區(qū)間D上的函數(shù)f(X),若存在閉區(qū)間[a,b]?D和常數(shù)c,.使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2∈D,當x2∉[a,b]時,f(x2)<c恒成立,則稱函數(shù)f(X)為區(qū)間D上的“平頂型”函數(shù).給出下列說法:
①“平頂型”函數(shù)在定義域內(nèi)有最大值;
②“平頂型”函數(shù)在定義域內(nèi)一定沒有最小值;
③函數(shù)f(x)=-|x+2|-|x-1|為R上的“平頂型”函數(shù);
④函數(shù)f(x)=sinx-|sinx|為R上的“平頂型”函數(shù).
則以上說法中正確的是
①③
①③
.(填上你認為正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•綿陽三模)對于定義在區(qū)間D上的函數(shù)f(X),若存在閉區(qū)間[a,b]?D和常數(shù)c,使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2∈D,當x2∉[a,b]時,f(x2)<c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平頂型”函數(shù).給出下列說法:
①“平頂型”函數(shù)在定義域內(nèi)有最大值;
②函數(shù)f(x)=x-|x-2|為R上的“平頂型”函數(shù);
③函數(shù)f(x)=sinx-|sinx|為R上的“平頂型”函數(shù);
④當t≤
3
4
時,函數(shù),f(x)=
2,(x≤1)
log
1
2
(x-t),(x>1)
是區(qū)間[0,+∞)上的“平頂型”函數(shù).
其中正確的是
①②④
①②④
.(填上你認為正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]⊆D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).給出下列說法:
f(x)=3-
4
x
不可能是k型函數(shù);
②若函數(shù)y=
(a2+a)x-1
a2x
(a≠0)
是1型函數(shù),則n-m的最大值為
2
3
3
;
③若函數(shù)y=-
1
2
x2+x
是3型函數(shù),則m=-4,n=0;
④設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為
4
9

其中正確的說法為
 
.(填入所有正確說法的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年四川綿陽高中高三第二次診斷性考試理科數(shù)學試卷(解析版) 題型:填空題

是定義在D上的函數(shù),若存在區(qū)間,使函數(shù)上的值域恰為,則稱函數(shù)k型函數(shù)給出下列說法:

不可能是k型函數(shù);

②若函數(shù)1型函數(shù),則的最大值為

③若函數(shù)3型函數(shù),則

④設(shè)函數(shù)(x0)k型函數(shù),則k的最小值為

其中正確的說法為 (填入所有正確說法的序號)

 

查看答案和解析>>

同步練習冊答案