【題目】如圖,已知長(zhǎng)方形ABCD中,AB=2 ,AD= ,M為DC的中點(diǎn).將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若點(diǎn)E是線段DB上的一動(dòng)點(diǎn),問(wèn)點(diǎn)E在何位置時(shí),二面角E﹣AM﹣D的余弦值為 .
【答案】
(1)證明:∵長(zhǎng)方形ABCD中, , ,M為DC的中點(diǎn),
∴AM=BM=2,∴BM⊥AM.
∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM平面ABCM,
∴BM⊥平面ADM,
∵AD平面ADM,∴AD⊥BM
(2)證明:以O(shè)為原點(diǎn),OA為x軸,ON為y軸,OD為z軸,
建立如圖所示的直角坐標(biāo)系
設(shè) ,則平面AMD的一個(gè)法向量 ,
=(1﹣λ,2λ,1﹣λ), ,
設(shè)平面AME的一個(gè)法向量 ,
則 ,∴
取y=1,得x=0,y=1, ,∴ ,
∵ = .∴得 或λ=﹣1,經(jīng)檢驗(yàn)得 滿足題意.
∴E為BD的三等分點(diǎn).
【解析】(1)推導(dǎo)出BM⊥AM,從而B(niǎo)M⊥平面ADM,由此能證明AD⊥BM.(2)以O(shè)為原點(diǎn),OA為x軸,ON為y軸,OD為z軸,建立空間直角坐標(biāo)系,利用向量法能求出E為BD的三等分點(diǎn).
【考點(diǎn)精析】關(guān)于本題考查的空間中直線與直線之間的位置關(guān)系,需要了解相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒(méi)有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知cos(π+α)= ,且 <α<π.
(Ⅰ)求5sin(α+π)﹣4tan(3π﹣α)的值
(Ⅱ)若0<β< ,cos(β﹣α)= ,求sin( +2β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M={1,2,3,4,5,6,7,8,9,10,11,12},以下命題正確的序號(hào)是 .
①如果函數(shù)f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),其中ai∈M(i=1,2,3,…,7),那么f′(0)的最大值為127 .
②數(shù)列{an}滿足首項(xiàng)a1=2,ak+12﹣ak2=2,k∈N* , 當(dāng)n∈M且n最大時(shí),數(shù)列{an}有2048個(gè).
③數(shù)列{an}(n=1,2,3,…,8)滿足a1=5,a8=7,|ak+1﹣ak|=2,k∈N* , 如果數(shù)列{an}中的每一項(xiàng)都是集合M的元素,則符合這些條件的不同數(shù)列{an}一共有33個(gè).
④已知直線amx+any+ak=0,其中am , an , ak∈M,而且am<an<ak , 則一共可以得到不同的直線196條.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線mx+ y﹣1=0在y軸上的截距是﹣1,且它的傾斜角是直線 =0的傾斜角的2倍,則( )
A.m=﹣ ,n=﹣2
B.m= ,n=2
C.m= ,n=﹣2
D.m=﹣ ,n=2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線C:ρ2﹣2ρcosθ﹣8=0 曲線E: (t是參數(shù))
(1)求曲線C的普通方程,并指出它是什么曲線.
(2)當(dāng)k變化時(shí)指出曲線K是什么曲線以及它恒過(guò)的定點(diǎn)并求曲線E截曲線C所得弦長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E , F分別為棱AB , CC1的中點(diǎn),則在平面ADD1A1內(nèi)且與平面D1EF平行的直線( )
A.不存在
B.有1條
C.有2條
D.有無(wú)數(shù)條
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣2x+2(x∈R).
(1)求f(x)的最小值;
(2)求證:x>0時(shí),ex>x2﹣2x+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,長(zhǎng)方體的長(zhǎng)、寬、高分別為5 cm,4 cm,3 cm.一只螞蟻從A點(diǎn)到C1點(diǎn)沿著表面爬行的最短路程是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知隨機(jī)變量X服從正態(tài)分布N(μ,σ2),且P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣σ<X≤μ+σ)=0.6826,若μ=4,σ=1,則P(5<X<6)=( )
A.0.1358
B.0.1359
C.0.2716
D.0.2718
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com