設(shè)f:A→B是從A到B的一個映射,其中A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x+y,xy),則A中(1,-2)的象是
 
,B中(1,-2)的原象是
 
考點:映射
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)對應(yīng)法則和象、原象的坐標,即可得出結(jié)論.
解答: 解:由R到R的映射f:(x,y)→(x+y,xy),
x=1,y=-2,則x+y=-1,xy=-2,∴A中(1,-2)的象是(-1,-2);
設(shè)(1,-2)的原象是(x,y)
則x+y=1,xy=-2
解得:x=2,y=-1,或x=-1,y=2
故(1,-2)的原象是(2,-1)和(-1,2)
故答案為:(-1,-2);(2,-1)和(-1,2).
點評:本題考查的知識點是映射的概念,其中根據(jù)對應(yīng)法則和象的坐標,構(gòu)造方程組是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某縣職工運動會將在本縣一中運動場隆重召開,為了搞好接待工作,執(zhí)委會在一中招募了12名男性志愿者和18名女性志愿者,調(diào)查發(fā)現(xiàn),這30名志愿者的身高如圖:(單位:cm)
若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括我,175cm)定義為“非高個子”,且只有“女高個子”才能擔(dān)任“禮儀小姐”
(1)應(yīng)用你所學(xué)的獨立性檢驗的知識判斷是否有95%的把握認為“高個子”于性別有關(guān).
參考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥ke0.100.050.010.005
ke2.7063.8416.6357.879
(2)用分層抽樣的方法從“高個子”中共抽取6人,若從這6個人中選2人,則他們至少有一人能擔(dān)任禮儀小姐的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算與化簡
(1)(0.008)-
2
3
÷(0.02)-
1
2
×(0.32)
1
2
;
(2)
a
4
3
-8a
1
3
b
a
2
3
+2
3ab
+4b
2
3
÷[(1-2
3
b
a
)×
3a
].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞),且滿足f(xy)=f(x)+f(y),f(
1
2
)=1
若對于x1、x2∈(0,+∞),都有 
x1-x2
f(x1)-f(x2)
<0.
(1)求f(1),f(2);
(2)解不等式f(-x)+f(2-x)≥-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x2-2x+2m-1
的定義域為R,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為R,f(-2)=2013,對任意x∈R都有f′(x)<2x成立,則不等式f(x)<x2+2009的解集是( 。
A、(-2,2)
B、(-2,+∞)
C、(-∞,-2)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)求
sin40°-
3
cos20°
cos10°
的值.
(Ⅱ)已知6sin2x+sinxcosx-2cos2x=0,π<x<
2
,試求sin2x-cos2x+tan2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)為R上的可導(dǎo)函數(shù),且?x∈R,均有f(x)>f′(x),則有(  )
A、e2013f(-2013)<f(0),f(2013)>e2013f(0)
B、e2013f(-2013)<f(0),f(2013)<e2013f(0)
C、e2013f(-2013)>f(0),f(2013)>e2013f(0)
D、e2013f(-2013)>f(0),f(2013)<e2013f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求直線(2m-1)x-(m+3)y-(m-11)=0恒過定點的坐標
 

查看答案和解析>>

同步練習(xí)冊答案