設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,Sn是數(shù)列{an}的前n項和,且S9S2,S44S2,則數(shù)列{an}的通項公式為________

 

an(2n1)

【解析】設(shè)等差數(shù)列{an}的公差為d,由Snna1d及已知條件得(3a13d)29(2a1d)

4a16d4(2a1d)

d2a1,代入a1,解得a10a1.

當(dāng)a10時,d0,舍去.因此a1,d.

故數(shù)列{an}的通項公式為an(n1)·(2n1)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練1練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)loga(x1)(a>1),若函數(shù)yg(x)的圖象上任意一點P關(guān)于原點對稱的點Q的軌跡恰好是函數(shù)f(x)的圖象.

(1)寫出函數(shù)g(x)的解析式;

(2)當(dāng)x[0,1)時總有f(x)g(x)≥m成立,求m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)5-2空間向量與立體幾何練習(xí)卷(解析版) 題型:填空題

正四棱錐S-ABCD中,O為頂點在底面上的射影,P為側(cè)棱SD的中點,且SOOD,則直線BC與平面PAC所成的角是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-2數(shù)列求和與數(shù)列的綜合應(yīng)用練習(xí)卷(解析版) 題型:解答題

已知Sn是數(shù)列{an}的前n項和,且anSn12(n≥2)a12.

(1)求數(shù)列{an}的通項公式.

(2)設(shè)bn,Tnbn1bn2b2n,是否存在最大的正整數(shù)k,使得

對于任意的正整數(shù)n,有Tn恒成立?若存在,求出k的值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-2數(shù)列求和與數(shù)列的綜合應(yīng)用練習(xí)卷(解析版) 題型:選擇題

已知{an}為等比數(shù)列,a4a72,a2·a9=-8,則a1a10(  )

A7 B5 C.-5 D.-7

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-1等差數(shù)列與等比數(shù)列練習(xí)卷(解析版) 題型:選擇題

在等比數(shù)列{an}中,已知a1a15243,則的值為(  )

A3 B9 C27 D81

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)3-2解三角形練習(xí)卷(解析版) 題型:填空題

據(jù)新華社報道,強臺風(fēng)珍珠在廣東饒平登陸.臺風(fēng)中心最大風(fēng)力達(dá)到12級以上,大風(fēng)降雨給災(zāi)區(qū)帶來嚴(yán)重的災(zāi)害,不少大樹被大風(fēng)折斷.某路邊一樹干被臺風(fēng)吹斷后,樹的上半部分折成與地面成45°角,樹干也傾斜為與地面成75°角,樹干底部與樹尖著地處相距20,則折斷點與樹干底部的距離是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-2導(dǎo)數(shù)及其應(yīng)用練習(xí)卷(解析版) 題型:解答題

甲方是一農(nóng)場,乙方是一工廠.由于乙方生產(chǎn)需占用甲方的資源,因此甲方有權(quán)向乙方索賠以彌補經(jīng)濟(jì)損失并獲得一定凈收入,在乙方不賠付甲方的情況下,乙方的年利潤x()與年產(chǎn)量t()滿足函數(shù)關(guān)系x2 000.若乙方每生產(chǎn)一噸產(chǎn)品必須賠付甲方S(以下稱S為賠付價格)

(1)將乙方的年利潤w()表示為年產(chǎn)量t()的函數(shù),并求出乙方獲得最大利潤的年產(chǎn)量;

(2)甲方每年受乙方生產(chǎn)影響的經(jīng)濟(jì)損失金額y0.002t2(),在乙方按照獲得最大利潤的產(chǎn)量進(jìn)行生產(chǎn)的前提下,甲方要在索賠中獲得最大凈收入,應(yīng)向乙方要求的賠付價格S是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-4練習(xí)卷(解析版) 題型:解答題

已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2sin θ.

(1)C1的參數(shù)方程化為極坐標(biāo)方程;

(2)C1C2交點的極坐標(biāo)(ρ≥0,0≤θ<2π)

 

查看答案和解析>>

同步練習(xí)冊答案