【題目】某乒乓球俱樂部派甲、乙、丙三名運動員參加某運動會的個人單打資格選拔賽,本次選拔賽只有出線和未出線兩種情況.若一個運動員出線記分,未出線記分.假設甲、乙、丙出線的概率分別為,他們出線與未出線是相互獨立的.

(1)求在這次選拔賽中,這三名運動員至少有一名出線的概率;

(2)記在這次選拔賽中,甲、乙、丙三名運動員所得分之和為隨機變量,求隨機變量的分布列和數(shù)學期望.

【答案】(1);(2)見解析.

【解析】試題分析:(1)根據(jù)事件的基本關系可得三名運動員至少有一名出線的對立事件為均不出線計算概率即可;

(2)的所有可能取值為,依次計算概率進而求分布列及期望即可.

試題解析:

(1)記“甲出線”為事件,“乙出線”為事件,“丙出線”為事件,“甲、乙、丙至少有一名出線”為事件.

.

(2)的所有可能取值為.

;

;

.

所以的分布列為

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 為自然對數(shù)的底數(shù).

I)若曲線在點處的切線平行于,的值;

II)求函數(shù)的極值;

III)當,若直線與曲線沒有公共點,的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),求解下列問題(1)求函數(shù)f(x)的定義域;(2)求f(﹣1),f(12)的值;.
(1)求函數(shù)f(x)的定義域;
(2)求f(﹣1),f(12)的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ,區(qū)間M=[a,b](a<b),集合N={y|y=f(x),x∈M},則使M=N成立的實數(shù)對(a,b)有( 。
A.1個
B.2個
C.3個
D.無數(shù)多個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

(Ⅰ)若圓x2y2=4在伸縮變換 (λ>0)的作用下變成一個焦點在x軸上,且離心率為的橢圓,求λ的值;

(Ⅱ)在極坐標系中,已知點A(2,0),點P在曲線Cρ上運動,求P、A兩點間的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面關于集合的表示正確的個數(shù)是( 。
①{2,3}≠{3,2}; ②{(x , y)|x+y=1}={y|x+y=1};
③{x|x>1}={y|y>1}; ④{x|x+y=1}={y|x+y=1}.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于集合A={x|x=m2﹣n2 , m∈Z,n∈Z},因為16=52﹣32 , 所以16∈A,研究下列問題:
(1)1,2,3,4,5,6六個數(shù)中,哪些屬于A,哪些不屬于A,為什么?
(2)討論集合B={2,4,6,8,…,2n,…}中有哪些元素屬于A,試給出一個普通的結論,不必證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l: (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2.
(1)若點M的直角坐標為(2, ),直線l與曲線C交于A、B兩點,求|MA|+|MB|的值;
(2)設曲線C經(jīng)過伸縮變換 得到曲線C′,求曲線C′的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐S﹣ABC中,△ABC是邊長為2 的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分別為AB、SB的中點.

(1)證明:AC⊥SB;
(2)求三棱錐B﹣CMN的體積.

查看答案和解析>>

同步練習冊答案