【題目】有一種大型商品,A,B兩地都有出售,且價格相同,某地居民從兩地之一購得商品后,運回的費用是:每單位距離A地的運費是B地運費的3倍.已知A,B兩地相距10 km,顧客選A或B地購買這件商品的標(biāo)準(zhǔn)是:包括運費和價格的總費用較低.求A,B兩地的售貨區(qū)域的分界線的曲線形狀,并指出曲線上、曲線內(nèi)、曲線外的居民應(yīng)如何選擇購貨地點.
【答案】見解析
【解析】
以A,B所確定的直線為x軸,線段AB的中點O為坐標(biāo)原點,建立平面直角坐標(biāo)系,設(shè)某地P的坐標(biāo)為(x,y),且P地居民選擇A地購買商品便宜,由題得,化簡即得解.
如圖所示,以A,B所確定的直線為x軸,線段AB的中點O為坐標(biāo)原點,建立平面直角坐標(biāo)系,則A(-5,0),B(5,0).
設(shè)某地P的坐標(biāo)為(x,y),且P地居民選擇A地購買商品便宜,
并設(shè)A地的運費為3a元/km,B地的運費為a 元/km,
∵價格+QA地運費<價格+QB地運費,
∴,
∵a>0,∴,
兩邊平方得9(x+5)2+9y2<(x-5)2+y2,
即.
∴以點C為圓心,為半徑的圓是這兩地的售貨區(qū)域的分界線.
圓C內(nèi)的居民從A地購貨便宜;圓C外的居民從B地購貨便宜;圓C上的居民從A,B兩地購貨的總費用相等,可隨意從A,B兩地之一購貨.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):
經(jīng)常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所有抽取的30歲以上的網(wǎng)民中利用分層抽樣抽取5人,
求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
從這5人中,在隨機(jī)選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2﹣3x+2=0},B={x|x2+2(a﹣1)x+(a2﹣5)=0}
(1)若A∩B={2},求實數(shù)a的值;
(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市“網(wǎng)約車”的現(xiàn)行計價標(biāo)準(zhǔn)是:路程在以內(nèi)(含)按起步價元收取,超過后的路程按元/收取,但超過后的路程需加收的返空費(即單
價為元/).
(1) 將某乘客搭乘一次“網(wǎng)約車”的費用(單位:元)表示為行程,
單位:)的分段函數(shù);
(2) 某乘客的行程為,他準(zhǔn)備先乘一輛“網(wǎng)約車”行駛后,再換乘另一輛
“網(wǎng)約車”完成余下行程,請問:他這樣做是否比只乘一輛“網(wǎng)約車”完成全部行程更省錢?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求過點P(2,3),且在兩坐標(biāo)軸上的截距相等的直線方程.
(2)已知直線l平行于直線4x+3y-7=0,直線l與兩坐標(biāo)軸圍成的三角形的周長是15,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項和,且有a1=1,Sn+1=an+1(n∈N*).
(1)求數(shù)列{an}的通項an;
(2)若bn= ,求數(shù)列{bn}的前n項和Tn;
(3)設(shè)ck= ,{ck}的前n項和為An , 是否存在最小正整數(shù)m,使得不等式An<m對任意正整數(shù)n恒成立?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求證:
(1)a>0,且-3<<-;
(2)函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個零點;
(3)設(shè)x1,x2是函數(shù)f(x)的兩個零點,則≤|x1-x2|<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解高二學(xué)生對“地方歷史”校本課程的喜歡是否與在本地成長有關(guān),在全校高二學(xué)生中隨機(jī)抽取了20名,得到一組不完全的統(tǒng)計數(shù)據(jù)如下表:
(1)補(bǔ)齊上表數(shù)據(jù),并分別從被抽取的喜歡“地方歷史”校本課程與不喜歡“地方歷史”校本課程的學(xué)生中各選1名做進(jìn)一步訪談,求至少有1名學(xué)生屬于在本地成長的概率;
(2)試回答:能否在犯錯誤的概率不超過0.10的前提下認(rèn)為“是否喜歡地方歷史校本課程與在本地成長有關(guān)”.
附:
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市擬興建九座高架橋,新聞媒體對此進(jìn)行了問卷調(diào)查,在所有參與調(diào)查的市民中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取部分市民做進(jìn)一步調(diào)研(不同態(tài)度的群體中亦按年齡分層抽樣),已知從“保留”態(tài)度的人中抽取了19人,則在“支持”態(tài)度的群體中,年齡在40歲以下(含40歲)的人有多少被抽取;
(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取6人做進(jìn)一步的調(diào)研,將此6人看作一個總體,在這6人中任意選取2人,求至少有1人在40歲以上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com