7.已知向量$\overrightarrow{a}$=(2k-3,-6),$\overrightarrow$=(2,1),且$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)k的值為(  )
A.2B.-2C.-3D.3

分析 利用向量垂直的性質(zhì)直接求解.

解答 解:∵向量$\overrightarrow{a}$=(2k-3,-6),$\overrightarrow$=(2,1),且$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}•\overrightarrow$=2(2k-3)-6=0,
解得實(shí)數(shù)k=3.
故選:D.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2$\sqrt{x}$+$\sqrt{5-x}$.
(1)求函數(shù)f(x)最大值,并求出相應(yīng)的x的值;
(2)若關(guān)于x的不等式.f(x)≤|m-2|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知全集U={x|x≥-3},集合A={x|-3<x≤4},則∁UA={x|x=-3或x>4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{alnx}{x}$的圖象在點(diǎn)(e2,f(e2))處的切線與直線y=-$\frac{1}{{e}^{4}}$x平行,則f(x)的極值點(diǎn)是x=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求下列函數(shù)的定義域:
(1)f(x)=$\frac{{3{x^2}}}{{\sqrt{1-x}}}$+$\sqrt{3x+1}$;            
(2)g(x)=$\frac{{\sqrt{2x-1}}}{x-1}$+(5x-4)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知正方形ABCD的邊長(zhǎng)為4,動(dòng)點(diǎn)P從B點(diǎn)開始沿折線BCDA向A點(diǎn)運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為S,則函數(shù)S=f(x)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)集合A={x|-1≤x+1≤6},B={x|m-1≤x<2m+1}.
(1)當(dāng)x∈Z,求A的真子集的個(gè)數(shù)?
(2)若B⊆A,求實(shí)數(shù)m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,D是BC中點(diǎn),E是AD中點(diǎn),CE的延長(zhǎng)線交AB于點(diǎn)F,若$\overrightarrow{DF}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則λ+μ=( 。
A.$-\frac{2}{3}$B.$-\frac{3}{4}$C.$\frac{6}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$y=x+\frac{t}{x}$有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在$(0,\sqrt{t}]$上是減函數(shù),在$[\sqrt{t},+∞)$上是增函數(shù).
(1)已知f(x)=$\frac{4{x}^{2}+4x+5}{2x+1}$-8,x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)對(duì)于(1)中的函數(shù)f(x)和函數(shù)g(x)=-x-2a,若對(duì)任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案