18.?dāng)?shù)列{an},{bn}的通項(xiàng)分別為an=1n(1+$\frac{1}{n}$),bn=$\frac{1}{n}$-$\frac{1}{{n}^{2}}$(n∈N*),證明:an>bn

分析 令f(x)=ln(1+x)-x+x2,(0≤x≤1),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可證明.

解答 解:令f(x)=ln(1+x)-x+x2,(0≤x≤1),
則f′(x)=$\frac{1}{1+x}$-1+2x=$\frac{2{x}^{2}+x}{1+x}$≥0,
∴函數(shù)f(x)在[0,1]上單調(diào)遞增,
∴f(x)≥f(0)=0,
∴l(xiāng)n(1+x)≥x-x2,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào).
令x=$\frac{1}{n}$(n∈N*),
則$ln(1+\frac{1}{n})$>$\frac{1}{n}-\frac{1}{{n}^{2}}$,∵an=1n(1+$\frac{1}{n}$),bn=$\frac{1}{n}$-$\frac{1}{{n}^{2}}$(n∈N*),
∴an>bn

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性證明不等式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點(diǎn)M是單位圓x2+y2=1上的一個(gè)定點(diǎn),過M作任意兩條互相垂直的直線,分別與圓x2+y2=2交于點(diǎn)A、B和C、D,則|AB|+|CD|的最大值是2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.根據(jù)下列各個(gè)數(shù)列{an}的首項(xiàng)和基本關(guān)系式,求其通項(xiàng)公式.
(1)a1=1,an=an-1+3n-1(n≥2);
(2)a1=1,an=$\frac{n-1}{n}$an-1(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且滿足a1=1,an+1=2$\sqrt{{S}_{n}}$+1,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{{n}^{2}}{{a}_{n}{a}_{n+1}}$,n∈N*,求Tn=b1+b2+b3+…+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)f(x)=4x-m•2x+m+3有兩個(gè)不同的零點(diǎn)x1,x2,且x1+x2>0,x1x2>0,則實(shí)數(shù)m的取值范圍為( 。
A.(-2,2)B.(6,+∞)C.(2,6)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)命題p:f(x)=$\frac{2}{x-m}$在區(qū)間(-4,+∞)上是減函數(shù);命題q:關(guān)于x的不等式x2-(m+1)x+$\frac{m+7}{4}$≤0在(-∞,+∞)上有解.若(¬p)∧q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,(x≤1)}\\{\frac{a}{x}-a,(x>1)}\end{array}\right.$是(-∞,+∞)上減函數(shù),那么a的取值范圍是( 。
A.(0,1)B.(0,$\frac{1}{3}$)C.[$\frac{1}{7}$,$\frac{1}{3}$)D.[$\frac{1}{7}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.定義在R上的偶函數(shù)f(x)滿足對(duì)任意x∈R,都有f(x+8)=f(x)+f(4),且x∈[0,4]時(shí),f(x)=4-x,則f(2015)的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.對(duì)任意不全為零的實(shí)數(shù)x,y,設(shè)f(x,y)=min{x,$\frac{x}{{x}^{2}+{y}^{2}}$},求f(x,y)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案