【題目】已知以為首項的數(shù)列滿足:.

(1)當時,且,寫出、;

(2)若數(shù)列是公差為-1的等差數(shù)列,求的取值范圍;

(3)記的前項和,當時,

①給定常數(shù),求的最小值;

②對于數(shù)列,,…,,當取到最小值時,是否唯一存在滿足的數(shù)列?說明理由.

【答案】1 ,;(2 ;(3)①為奇數(shù)時最小值為,當為偶數(shù)時最小值為 ; ②不唯一,理由見解析。

【解析】

1)根據(jù)首項及遞推公式,依次代入即可求得的值。

2)根據(jù)等差數(shù)列通項公式,表示出,根據(jù)絕對值的非負性可得,再根據(jù)即可求得的取值范圍。

3)將代入,求得……值,即可表示出的最小值;舉出特例,說明使得成立的數(shù)列不唯一即可。

1)因為,且

所以當 ,即

所以當 ,即

2)因為數(shù)列是公差為-1的等差數(shù)列

所以,即①,

,則,即

時,

因為

所以與①矛盾,(舍)

所以

所以

3)當

所以,,…..

①當為奇數(shù)時的最小值為,

為偶數(shù)時的最小值為

②不唯一

因為滿足

如數(shù)列 ,兩個數(shù)列都滿足

因而不存在唯一的數(shù)列滿足式子

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了50人,他們年齡大點頻率分布及支持“生育二胎”人數(shù)如下表:

年齡

頻率

5

10

15

10

5

5

支持“生育二胎”

4

5

12

8

2

1

(1)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99%的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:

(2)若對年齡在的被調(diào)查人中隨機選取兩人進行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?

參考數(shù)據(jù): , , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正六棱錐被過棱錐高的中點且平行于底的平面所截,得到正六棱臺和較小的棱錐.

1)求大棱錐、小棱錐、棱臺的側(cè)面積之比;

2)若大棱錐的側(cè)棱長為,小棱錐的底面邊長為,求截得的棱臺的側(cè)面積與全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為R,集合A={x|-3x4},B={x|1≤x≤10}

1)求AB,ARB);

2)已知集合C={x|2a-1≤xa+1},若CA=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為考查某種疫苗預(yù)防疾病的效果,進行動物實驗,得到統(tǒng)計數(shù)據(jù)如下:

未發(fā)病

發(fā)病

總計

未注射疫苗

20

注射疫苗

30

總計

50

50

100

現(xiàn)從所有試驗動物中任取一只,取到“注射疫苗”動物的概率為.

(1)求列聯(lián)表中的數(shù)據(jù),,的值;

(2)判斷疫苗是否有效?

(3)能夠有多大把握認為疫苗有效?

(參考公式

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù),則過曲線上一點的切線方程為  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,若點與橢圓左焦點構(gòu)成的直線的斜率為與右焦點構(gòu)成的直線的斜率為,且;

1)求橢圓的方程;

2)過點的直線與橢圓的另一個交點為軸的交點為,為橢圓的中心,點在橢圓上,且,若,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 如圖是正方體的平面展開圖在這個正方體中,

①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.

以上四個命題中,正確命題的序號是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的極小值;

(2)求證:當時,.

查看答案和解析>>

同步練習(xí)冊答案