19.若log5$\frac{1}{2}$•log29•log9a=-2,則a=25.

分析 直接利用對(duì)數(shù)的運(yùn)算法則化簡求解即可.

解答 解:log5$\frac{1}{2}$•log29•log9a=-2,
可得-log52•log29•log9a=-2,
即log5a=2.
a=25.
故答案為:25.

點(diǎn)評(píng) 本題考查對(duì)數(shù)的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若數(shù)列{an}是等比數(shù)列,且a1+a2+a3+a4+…+a2013=2013,a22+a32+a42+a52+…+a20142=2014,則a3-a4+a5-a6+…+a2015=( 。
A.$\frac{2013}{2014}$B.$\frac{2014}{2013}$C.$\frac{2015}{2014}$D.$\frac{2013}{2012}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)-f(x)=2x
(1)求f(x);
(2)若y=f(x)-kx在[2,4]上是單調(diào)減函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(-3,$\sqrt{3}$),則<$\overrightarrow{a}$,$\overrightarrow$>=( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=e-x+ax(a∈R)在區(qū)間(1,+∞)上為增函數(shù),則a的取值范圍是( 。
A.(0,+∞)B.[0,+∞)C.($\frac{1}{e}$,+∞)D.[$\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若log2a,log2b是方程x2+x-3=0的兩根,則(lg$\frac{a}$)2等于( 。
A.13B.13(lg2)2C.10D.10(lg2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)集合M={x|1≤x≤10,且x∈N*},A是M的子集,且A中至少含有一個(gè)x2(x∈M),則這種子集A的個(gè)數(shù)是896.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知某幾何體的俯視圖是如圖所示的邊長為1的正方形,主視圖與左視圖是邊長為1的正三角形,則其全面積是(  )
A.2B.3C.$1+\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.用大小和形狀完全相同的小正方體木塊搭成一個(gè)幾何體,使得它的主視圖和俯視圖如圖所示,則搭成這樣的一個(gè)幾何體至少需要小正方體木塊的個(gè)數(shù)為( 。
A.22個(gè)B.19個(gè)C.16個(gè)D.13個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案