已知雙曲線的一個焦點坐標為(
6
,0),且經(jīng)過點(-5,2),則雙曲線的標準方程為( 。
A、
x2
5
-y2=1
B、
y2
5
-x2=1
C、
x2
25
-y2=1
D、
x2
4
-
y2
2
=1
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)雙曲線的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),利用雙曲線的一個焦點坐標為(
6
,0),且經(jīng)過點(-5,2),建立方程組,即可求出雙曲線的標準方程.
解答: 解:設(shè)雙曲線的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),
∵雙曲線的一個焦點坐標為(
6
,0),且經(jīng)過點(-5,2),
25
a2
-
4
b2
=1
a2+b2=6
,
∴a=
5
,b=1,
∴雙曲線的標準方程為
x2
5
-y2=1.
故選:A.
點評:本題考查雙曲線的簡單性質(zhì),考查雙曲線的方程,正確運用待定系數(shù)法是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

北京市各級各類中小學每年都要進行“學生體質(zhì)健康測試”,測試總成績滿分為100分,規(guī)定測試成績在[85,100]之間為體質(zhì)優(yōu)秀;在[75,85)之間為體質(zhì)良好;在[60,75)之間為體質(zhì)合格;在[0,60)之間為體質(zhì)不合格.現(xiàn)從某校高三年級的300名學生中隨機抽取30名學生體質(zhì)健康測試成績,其莖葉圖如下:
 9  1  3  5  6                        
 8  0  1  1  2  2  3  3  3  4  4  6  6  7  7  9
 7  0  5  6  6  7  9                    
 6  4  5  8                          
 5  6                              
(Ⅰ)試估計該校高三年級體質(zhì)為優(yōu)秀的學生人數(shù);
(Ⅱ)根據(jù)以上30名學生體質(zhì)健康測試成績,現(xiàn)采用分層抽樣的方法,從體質(zhì)為優(yōu)秀和良好的學生中抽取5名學生,再從這5名學生中選出3人.
(。┣笤谶x出的3名學生中至少有1名體質(zhì)為優(yōu)秀的概率;
(ⅱ)求選出的3名學生中體質(zhì)為優(yōu)秀的人數(shù)不少于體質(zhì)為良好的人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(
3
,1),
b
=(1,c).若
a
b
=0
,則實數(shù)c的值為( 。
A、-
3
B、
3
C、
3
3
D、-
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線mx2+y2=1的離心率e=
5
,則m為( 。
A、-
1
4
B、-4
C、4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=an+3,則a1+a2+a3+…+a10=(  )
A、130B、145
C、160D、165

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用反證法證明命題:若a+b+c為偶數(shù),則“自然a、b、c恰有一個偶數(shù)”時正確反設(shè)為( 。
A、a、b、c都是奇數(shù)
B、a、b、c都是偶數(shù)
C、a、b、c中至少有兩個偶數(shù)
D、a、b、c中或都是奇數(shù)或至少有兩個偶數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
-x2-2x+3,x≤0
|2-lnx|,x>0
,直線y=m與函數(shù)f(x)的圖象相交于四個不同的點,從小到大,交點橫坐標依次記為a,b,c,d,有下列結(jié)論:
①m∈[3,4);
②abcd∈[0,e4);
③a+b+c+d∈[e5+
1
e
-2,e6+
1
e2
-2); 
④若關(guān)于x的方程f(x)+x=m恰有三個不同實根,則m取值唯一.
其中正確的結(jié)論個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=x+2與曲線
y2
2
-
x|x|
2
=1的交點個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在平面直角坐標系xOy中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0),右頂點為D(2,0),設(shè)點A(1,
1
2
).
(1)求該橢圓的標準方程;
(2)已知直線l與橢圓相交弦BC的中點為A,求直線l的方程;
(3)求△FBC的面積S△FBC

查看答案和解析>>

同步練習冊答案