如果一個(gè)數(shù)列從第2項(xiàng)開始,每一項(xiàng)與它的前一項(xiàng)的和等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等和數(shù)列.已知等和數(shù)列{an}的第一項(xiàng)為2,公和為7,求這個(gè)數(shù)列的通項(xiàng)公式an
考點(diǎn):數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:由a1=2,an+an+1=7,即可得出.
解答: 解:∵a1=2,an+an+1=7,
∴a2=5,a3=2,a4=5,…,
∴an=
2,n為正奇數(shù)
5,n為正偶數(shù)
點(diǎn)評(píng):本題考查了新定義“等和數(shù)列”、數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,且a≠1,loga3<1,則實(shí)數(shù)a的取值范圍是( 。
A、(0,1)
B、(0,1)∪(3,+∞)
C、(3,+∞)
D、(1,2)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M=x2+y2-4x+2y,N=-5,若x≠2或y≠-1,則( 。
A、M>NB、M<N
C、M=ND、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若c=
2
,b=
6
,B=120°,則sinC等于(  )
A、
6
B、2
C、
3
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
x1
x2
)=f(x1)-f(x2),且當(dāng)0<x<1時(shí),f(x)>0.
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)函數(shù)f(x)=(a-b)x 
a
3
+b-3是冪函數(shù),求b 2log32-a -
1
2
的值.
(2)計(jì)算:tan
π
4
-cos4
π
2
+2sin3π-sin2
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+
y2
3
=1,A(-2,0),T(4,0),過點(diǎn)T任作直線l交橢圓于P,Q兩點(diǎn),連接AP,AQ交直線x=1于M,N,設(shè)點(diǎn)M,N的縱坐標(biāo)為y1,y2,證明:y1y2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了研究玉米品種對(duì)產(chǎn)量的影響,某農(nóng)科院對(duì)一塊試驗(yàn)田種植的一批玉米共10000株的生長情況進(jìn)行研究,現(xiàn)采用分層抽樣方法抽取50株作為樣本,統(tǒng)計(jì)結(jié)果如下:
高桿矮桿合計(jì)
圓粒111930
皺粒13720
合計(jì)242650
(1)現(xiàn)采用分層抽樣的方法,從該樣本所含的圓粒玉米中取出6株玉米,再從這6株玉米中隨機(jī)選出2株,求這2株之中既有高桿玉米又有矮桿玉米的概率;
(2)根據(jù)對(duì)玉米生長情況作出的統(tǒng)計(jì),是否能在犯錯(cuò)誤的概率不超過0.050的前提下認(rèn)為玉米的圓粒與玉米的高桿有關(guān)?(下面的臨界值表和公式可供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)函數(shù)f(x)=
sinx+a
sinx
(0<x<π),如果a>0,函數(shù)f(x)是否存在最大值和最小值,如果存在請寫出最大(小)值及對(duì)應(yīng)x值的集合;
(2)已知k<0,求函數(shù)y=sin2x+k(cosx-1)的最小值.

查看答案和解析>>

同步練習(xí)冊答案