已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿(mǎn)足f(
x1
x2
)=f(x1)-f(x2),且當(dāng)0<x<1時(shí),f(x)>0.
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.
考點(diǎn):抽象函數(shù)及其應(yīng)用,函數(shù)單調(diào)性的判斷與證明,函數(shù)的最值及其幾何意義
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)令x1=x2,即可得到f(1);
(2)令0<x1<x2,則0<
x1
x2
<1,由條件得到f(
x1
x2
)>0,再根據(jù)條件得到f(x1)-f(x2)>0,由單調(diào)性定義即可;
(3)求出f(9)=2f(3)=-2.再由單調(diào)性,即可得到最小值.
解答: 解:(1)令x1=x2,則f(1)=0;
(2)令0<x1<x2,則0<
x1
x2
<1,
當(dāng)0<x<1時(shí),f(x)>0,
則f(
x1
x2
)>0,
∵f(
x1
x2
)=f(x1)-f(x2),
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴f(x)在區(qū)間(0,+∞)上是減函數(shù);
(3)∵f(3)=-1,
∴f(
9
3
)=f(9)-f(3),
即f(9)=2f(3)=-2.
∵f(x)在[2,9]上遞減,
∴f(9)最小,且為-2.
點(diǎn)評(píng):本題考查抽象函數(shù)及運(yùn)用,考查函數(shù)的單調(diào)性及運(yùn)用,注意運(yùn)用定義證明單調(diào)性,同時(shí)考查賦值法求抽象函數(shù)值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義集合A與B的運(yùn)算“*”為:A*B={x|x∈A或x∈B,但x∉A∩B},按此定義,(X*Y)*Y=(  )
A、XB、YC、X∩YD、X∪Y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
ex-1,x<1
x
1
3
,x≥1
,則使得f(x)≤2成立的x的取值范圍是( 。
A、(-∞,1]
B、(-∞,1+ln2]
C、(-∞,8]
D、[1,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p;?x∈R,x≥2,那么命題¬p為( 。
A、?x∈R,x≤2
B、?x0∈R,x0<2
C、?x∈R,x≤-2
D、?x0∈R,x0<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在使f(x)≥M成立的所有常數(shù)M中,把M的最大值叫做f(x)的“下確界”,例如f(x)=x2+2x≥M,則Mmin=-1,故-1是f(x)=x2+2x的下確界,那么
a2+b2
(a+b)2
(其中a,b∈R,且a,b不全為的0下確界是(  )
A、2
B、
1
2
C、4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)數(shù)列從第2項(xiàng)開(kāi)始,每一項(xiàng)與它的前一項(xiàng)的和等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等和數(shù)列.已知等和數(shù)列{an}的第一項(xiàng)為2,公和為7,求這個(gè)數(shù)列的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
p
q
,而
p
=(2-4sin2
ωx
2
,1),
q
=(cosωx,
3
sin2ωx)(x∈R).
(1)若f(
π
3
)最大,求ω能取到的最小正數(shù)值;
(2)對(duì)(1)中的ω,若f(x)=2
3
sinx+1且x∈(0,
π
2
),求tanx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|x-1|,g(x)=|x-2|.
(1)解不等式f(x)+g(x)<2;
(2)對(duì)于實(shí)數(shù)x,y,若f(x)≤1,g(y)≤1,求|x-2y+1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+(b-8)x-a-ab(a≠0),當(dāng)x∈(-3,2)時(shí),f(x)>0;當(dāng)x∈(-∞,-3)∪(2,+∞)時(shí),f(x)<0.
(1)求f(x)的解析式;
(2)求f(x)在[-3,3]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案