如圖所示,已知AD是△ABC的內(nèi)角平分線,求證:

答案:
解析:

  證明:過點(diǎn)C作CE∥AD,交BA的延長線于點(diǎn)E.

  因?yàn)锳D∥EC,

  所以

  又因?yàn)椤螮=∠BAD,∠CAD=∠ACE,∠BAD=∠CAD,

  所以∠E=∠ACE,

  所以AC=AE.

  所以


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知PA是⊙O相切,A為切點(diǎn),PBC為割線,弦CD∥AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且DE2=EF•EC.
(1)求證:A、P、D、F四點(diǎn)共圓;
(2)若AE•ED=24,DE=EB=4,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知ABCD是直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,PA⊥平面ABCD.
(1)證明:PC⊥CD;
(2)若E是PA的中點(diǎn),證明:BE∥平面PCD;
(3)若PA=3,求三棱錐B-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知D是面積為1的△ABC的邊AB上的任一點(diǎn),E是邊AC上任一點(diǎn),連接DE,F(xiàn)是線段DE上一點(diǎn),連接BF,設(shè)
AD
=λ1
AB
,
AE
=λ2
AC
,
DF
=λ3
DE
,且λ2+λ3-λ1=
1
2
,則△BDF的面積S的最大值是( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.
(1)求異面直線PC與BD所成的角;
(2)在線段PB上是否存在一點(diǎn)E,使PC⊥平面ADE?若存在,確定E點(diǎn)的位置;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案