已知函數(shù)f(x)=sin(
1
2
x+θ)-
3
cos(
1
2
x+θ)(|θ|<
π
2
)的圖象關(guān)于y中對(duì)稱,則y=f(x)在下列哪個(gè)區(qū)間上是減函數(shù)( 。
A、(0,
π
2
B、(
π
2
,π)
C、(-
π
2
,-
π
4
D、(
2
,2π)
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:首先,結(jié)合所給函數(shù)圖象關(guān)于y軸對(duì)稱,得到該θ=-
π
6
,然后,化簡(jiǎn)函數(shù)即可.
解答: 解:∵函數(shù)f(x)的圖象關(guān)于y中對(duì)稱,
∴當(dāng)x=0時(shí),函數(shù)f(x)取得最大(或最。┲担
此時(shí),f(x)=2sin(θ-
π
3
),
∵|θ|<
π
2
,
∴θ=-
π
6
,
∴f(x)=sin(
1
2
x-
π
6
)-
3
cos(
1
2
xx-
π
6

=-2cos
1
2
x

∴函數(shù)f(x)在區(qū)間(-
π
2
,-
π
4
)上為減函數(shù),
故選:C.
點(diǎn)評(píng):本題重點(diǎn)考查了三角函數(shù)公式、三角恒等變換等公式、屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面α∩平面β=l,點(diǎn)A,B∈α,點(diǎn)C∈β,且A,B,C均不在直線l上,給出四個(gè)命題:
l⊥AB
l⊥AC
⇒α⊥β;②
l⊥AC
l⊥BC
⇒α⊥平面ABC;③
α⊥β
AB⊥BC
⇒l⊥平面ABC;④AB∥l⇒l∥平面ABC.
其中正確的命題是( 。
A、①與②B、②與③
C、①與③D、②與④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人玩拋擲正四面體玩具游戲,現(xiàn)由兩枚大小相同,質(zhì)地均勻的正四面體玩具,每枚玩具的各個(gè)面上分別寫著數(shù)字3,4,5,7,甲先擲一枚玩具,朝下的面上的數(shù)字記 為a,乙后擲一枚玩具,朝下的面的數(shù)字記為b.
(1)求事件“a+b≥10”的概率;
(2)若游戲規(guī)定:當(dāng)“a+b為奇數(shù)”時(shí),甲 贏;當(dāng)“a+b為偶數(shù)時(shí)”,乙贏,試問這個(gè)規(guī)定公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=mx2-x+1有兩個(gè)零點(diǎn)分別屬于區(qū)間(0,2),(2,3),則m的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
.
z
表示復(fù)數(shù)z的共軛復(fù)數(shù),則與“復(fù)數(shù)z為實(shí)數(shù)”不等價(jià)的說法是( 。
A、z=
.
z
B、z2≥0
C、z+
.
z
=0
D、lmz=0(lmz表示復(fù)數(shù)z的虛部)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,ω都是正數(shù),函數(shù)f(x)=asinωx+bcosωx的周期為π,且有最大值f(
π
12
)=4

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若[
6
, m]
是f(x)的一個(gè)單調(diào)區(qū)間,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin2x的圖象向左平移
π
4
個(gè)單位,再向上平移1個(gè)單位,所得圖象的函數(shù)解析式是( 。
A、y=cos2x
B、y=1+sin(2x+
π
4
)
C、y=2cos2x
D、y=2sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若a1=2,且對(duì)任意的正整數(shù)n都有a2n=an2,則a8的值為(  )
A、256B、128
C、64D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3xin(2x+
π
6
)+2.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)x∈[-
π
6
π
2
]
時(shí),求函數(shù)的最值及對(duì)應(yīng)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案