【題目】某高校共有15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).

I)應收集多少位男生樣本數(shù)據(jù)?

II)根據(jù)這300個樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,試估計該校學生每周平均體育運動時間超過4個小時的概率;

(Ⅲ)在樣本數(shù)據(jù)中,有165位男生的每周平均體育運動時間超過4個小時請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有%的把握認為該校學生的每周平均體育運動時間與性別有關”.

男生

女士

總計

每周平均體育運動時

間不超過4小時

每周平均體育運動時

間超過4小時

總計

附:

0.10

0.05

0.010

0.005

k

2.706

3.841

6.635

7.879

【答案】(Ⅰ)(Ⅱ) ()見解析

沒有%的把握認為該校學生的每周平均體育運動時間與性別有關”

【解析】

(Ⅰ)根據(jù)分層抽樣的比例可得解;

(Ⅱ)利用頻率等于頻率直方圖中的縱坐標乘以組距得到;

(Ⅲ)根據(jù)比例完成列聯(lián)表,計算,查表可得結論.

(Ⅰ)設應收集多少位男生樣本數(shù)據(jù),

由分層抽樣得 解得

故應收集位男生樣本數(shù)據(jù).

(Ⅱ) 設該校學生每周平均體育運動時間超過4個小時的概率,

故該校學生每周平均體育運動時間超過4個小時的概率是

(Ⅲ)

男生

女士

總計

每周平均體育運動時間不超過4小時

每周平均體育運動時間超過4小時

總計

所以

因為

所以沒有%的把握認為該校學生的每周平均體育運動時間與性別有關”

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)().

(Ⅰ)當時,求曲線處的切線方程;

(Ⅱ)若對任意,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在區(qū)間上的函數(shù)滿足,且當時,.

(1)求的值;

(2)證明:為單調增函數(shù);

(3)若,求上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)上單調遞減,且,則不等式的解集________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直三棱柱的側面是正方形,點是側面的中心,是棱的中點

(1)求證:平面;

(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中有大小形狀完全相同的個乒乓球,乒乓球上分別印有數(shù)字,小明和小芳分別從袋子中摸出一個球(不放回),看誰摸出來的球上的數(shù)字大.小明先摸出一球說:“我不能肯定我們兩人的球上誰的數(shù)字大.”然后小芳摸出一球說:“我也不能肯定我們兩人的球上誰的數(shù)字大.”那么小芳摸出來的球上的數(shù)字是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中N,≥2,且R.

(1)當,時,求函數(shù)的單調區(qū)間;

(2)當時,令,若函數(shù)有兩個極值點,,且,求的取值范圍;

(3)當時,試求函數(shù)的零點個數(shù),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】支付寶作為一款移動支付工具,在日常生活中起到了重要的作用.巴蜀中學高2018屆學生為了調查支付寶在人群中的使用情況,在街頭隨機對名市民進行了調查,結果如下.

(1)對名市民按年齡以及是否使用支付寶進行分組,得到以下表格,試問能否有的把握認為“使用支付寶與年齡有關”?

使用支付寶

不使用支付寶

合計

歲以上

歲以下

合計

(2)現(xiàn)采用分層抽樣的方法,從被調查的歲以下的市民中抽取了位進行進一步調查,然后從這位市民中隨機抽取位,求至少抽到位“使用支付寶”的市民的概率;

(3) 為了鼓勵市民使用支付寶,支付寶推出了“獎勵金”活動,每使用支付寶支付一次,分別有的概率獲得元獎勵金,每次支付獲得的獎勵金情況互不影響.若某位市民在一周使用了次支付寶,記為這一周他獲得的獎勵金數(shù),求的分布列和數(shù)學期望.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)當時,若函數(shù)存在與直線平行的切線,求實數(shù)的取值范圍;

(2)當時,,若的最小值是,求的最小值.

查看答案和解析>>

同步練習冊答案