如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點C作⊙O的切線,交BD的延長線于點P,交AD的延長線于點E。
(1)求證:AB2=DE·BC;
(2)若BD=9,AB=6,BC=9,求切線PC的長。
解:(1)∵AD∥BC,
∴AB=CD,∠EDC=∠BCD,
又PC與⊙O相切
∴∠ECD=∠DBC,
∴△CDE∽△BCD ,

∴CD2=DE·BC,即AB2=DE·BC。
(2)由(1)知,DE=
∵△PDE∽△PBC,

又∵PB-PD=9,


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點C作⊙O的切線,交BD的延長線于點P,交AD的延長線于點E.
(1)求證:AB2=DE•BC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點B引⊙O的切線分別交DA、CA的延長線于E、F,已知BC=8,CD=5,AF=6,則EF=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD內(nèi)接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)【選修4-1:幾何證明選講】
如圖,梯形ABCD內(nèi)接于圓O,AD∥BC,且AB=CD,過點B引圓O的切線分別交DA、CA的延長線于點E、F.
(1)求證:CD2=AE•BC;
(2)已知BC=8,CD=5,AF=6,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案