如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分別為AC、DC的中點.
(Ⅰ)求證:EF⊥BC;
(Ⅱ)求二面角E-BF-C的正弦值.
考點:用空間向量求平面間的夾角,直線與平面垂直的性質(zhì),二面角的平面角及求法
專題:空間位置關(guān)系與距離
分析:(Ⅰ)以B為坐標(biāo)原點,在平面DBC內(nèi)過B作垂直BC的直線為x軸,BC所在直線為y軸,在平面ABC內(nèi)過B作垂直BC的直線為z軸,建立如圖所示空間直角坐標(biāo)系,得到E、F、B、C點的坐標(biāo),易求得此
EF
BC
=0,所以EF⊥BC;
(Ⅱ)設(shè)平面BFC的一個法向量
n1
=(0,0,1),平面BEF的法向量
n2
=(x,y,z),依題意,可求得一個
n2
=(1,-
3
,1),設(shè)二面角E-BF-C的大小為θ,可求得sinθ的值.
解答: (Ⅰ)證明:由題意,以B為坐標(biāo)原點,在平面DBC內(nèi)過B作垂直BC的直線為x軸,BC所在直線為y軸,在平面ABC內(nèi)過B作垂直BC的直線為z軸,建立如圖所示空間直角坐標(biāo)系,易得B(0,0,0),A(0,-1,
3
),D(
3
,-1,0),C(0,2,0),因而E(0,
1
2
3
2
),F(xiàn)(
3
2
,
1
2
,0),所以
EF
=(
3
2
,0,-
3
2
),
BC
=(0,2,0),因此
EF
BC
=0,所以EF⊥BC.
(Ⅱ)解:在圖中,設(shè)平面BFC的一個法向量
n1
=(0,0,1),平面BEF的法向量
n2
=(x,y,z),又
BF
=(
3
2
,
1
2
,0),
BE
=(0,
1
2
,
3
2
),
n2
BF
=0
n2
BE
=0
得其中一個
n2
=(1,-
3
,1),
設(shè)二面角E-BF-C的大小為θ,由題意知θ為銳角,則
cosθ=|cos<
n1
n2
>|=|
n1
n2
|
n1
||
n2
|
|=
1
5
,
因此sinθ=
2
5
=
2
5
5
,即所求二面角正弦值為
2
5
5
點評:本題主要考查空間點、線、面位置關(guān)系,二面角等基礎(chǔ)知識,同時考查空間想象能力,空間向量的坐標(biāo)運算,推理論證能力和運算求解能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+
1
2
)為奇函數(shù),設(shè)g(x)=f(x)+1,則g(
1
2015
)+g(
2
2015
)+g(
3
2015
)+g(
4
2015
)+…+g(
2014
2015
)=( 。
A、1007B、2014
C、2015D、4028

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是線段AB的中點.
(Ⅰ)求證:C1M∥平面A1ADD1;
(Ⅱ)若CD1垂直于平面ABCD且CD1=
3
,求平面C1D1M和平面ABCD所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導(dǎo)函數(shù).
(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表達式;
(Ⅱ)若f(x)≥ag(x)恒成立,求實數(shù)a的取值范圍;
(Ⅲ)設(shè)n∈N+,比較g(1)+g(2)+…+g(n)與n-f(n)的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,EP交圓于E,C兩點,PD切圓于D,G為CE上一點且PG=PD,連接DG并延長交圓于點A,作弦AB垂直EP,垂足為F.
(Ⅰ)求證:AB為圓的直徑;
(Ⅱ)若AC=BD,求證:AB=ED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列一組數(shù)據(jù):87,91,90,89,x,若它們的平均數(shù)為90,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合{a,b,c}={0,1,2},且下列三個關(guān)系:①?a≠2;②?b=2;③?c≠0有且只有一個正確,則100a+10b+c等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(x+1-y)6的展開式中含x2y3項的系數(shù)為a,則a=
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:x2+2y2=4.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)設(shè)O為原點,若點A在直線y=2上,點B在橢圓C上,且OA⊥OB,求線段AB長度的最小值.

查看答案和解析>>

同步練習(xí)冊答案