【題目】已知雙曲線 =1(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準(zhǔn)線分別交于O、A、B三點(diǎn),O為坐標(biāo)原點(diǎn).若雙曲線的離心率為2,△AOB的面積為 ,則p=(
A.1
B.
C.2
D.3

【答案】C
【解析】解:∵雙曲線 , ∴雙曲線的漸近線方程是y=± x
又拋物線y2=2px(p>0)的準(zhǔn)線方程是x=﹣
故A,B兩點(diǎn)的縱坐標(biāo)分別是y=± ,雙曲線的離心率為2,所以 ,
,
A,B兩點(diǎn)的縱坐標(biāo)分別是y=± =
又,△AOB的面積為 ,x軸是角AOB的角平分線
,得p=2.
故選C.
求出雙曲線 的漸近線方程與拋物線y2=2px(p>0)的準(zhǔn)線方程,進(jìn)而求出A,B兩點(diǎn)的坐標(biāo),再由雙曲線的離心率為2,△AOB的面積為 ,列出方程,由此方程求出p的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+x2
(1)若函數(shù)g(x)=f(x)﹣ax在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)在(1)的條件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的極小值;
(3)設(shè)F(x)=2f(x)﹣3x2﹣kx(k∈R),若函數(shù)F(x)存在兩個零點(diǎn)m,n(0<m<n),且2x0=m+n.問:函數(shù)F(x)在點(diǎn)(x0 , F(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|+m|x+a|. (Ⅰ)當(dāng)m=a=﹣1時,求不等式f(x)≥x的解集;
(Ⅱ)不等式f(x)≥2(0<m<1)恒成立時,實(shí)數(shù)a的取值范圍是{a|a≤﹣3或a≥3},求實(shí)數(shù)m的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,設(shè)ξ表示所抽取的3名同學(xué)中得分在[80,90)的學(xué)生個數(shù),求ξ的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 為菱形,四邊形 為平行四邊形,設(shè) 相交于點(diǎn) ,

(1)證明:平面 平面 ;
(2)若 ,求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn , 等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12,q= (Ⅰ)求an與bn;
(Ⅱ)設(shè)數(shù)列{cn}滿足cn= ,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】斜率為 的直線l與橢圓 + =1(a>b>0)交于不同的兩點(diǎn)A、B.若點(diǎn)A、B在x軸上的射影恰好為橢圓的兩個焦點(diǎn).
(1)求橢圓的離心率;
(2)P是橢圓上的動點(diǎn),若△PAB面積最大值是4 ,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=cos2ωx的圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在 上為減函數(shù),則正實(shí)數(shù)ω的最大值為(
A.
B.1
C.
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD的三視圖如圖所示,其五個頂點(diǎn)都在同一球面上,若四棱錐P﹣ABCD的側(cè)面積等于4(1+ ),則該外接球的表面積是(
A.4π
B.12π
C.24π
D.36π

查看答案和解析>>

同步練習(xí)冊答案