【題目】如圖1,在路邊安裝路燈,路寬為,燈柱長(zhǎng)為米,燈桿長(zhǎng)為1米,且燈桿與燈柱成角,路燈采用圓錐形燈罩,其軸截面的頂角為,燈罩軸線與燈桿垂直.
⑴設(shè)燈罩軸線與路面的交點(diǎn)為,若米,求燈柱長(zhǎng);
⑵設(shè)米,若燈罩截面的兩條母線所在直線一條恰好經(jīng)過(guò)點(diǎn),另一條與地面的交點(diǎn)為(如圖2)
(圖1) (圖2)
(。┣的值;(ⅱ)求該路燈照在路面上的寬度的長(zhǎng).
【答案】(1)燈柱長(zhǎng)為13米.
(2)(。值為;(ⅱ) 長(zhǎng)為米.
【解析】試題分析:(1)在四邊形OCAB內(nèi)求解,先過(guò)點(diǎn)作的垂線,垂足為,過(guò)點(diǎn)作的垂線,垂足為.再分別在直角三角形AHC,及ABF中求解,則(2)在中,由余弦定理得,由正弦定理得,即得;再由 以及正弦定理得
試題解析:解:(1)過(guò)點(diǎn)作的垂線,垂足為,過(guò)點(diǎn)作的垂線,垂足為.
因?yàn)?/span>,
所以, ,
所以, ,
又因?yàn)?/span>,所以,
因?yàn)?/span>,所以,
解得.
(2)(ⅰ)在中,由余弦定理得
,所以,
在中,由正弦定理得,即,
解得,所以.
(ⅱ), ,
所以 ,
在中,由正弦定理得,即
.
答:(1)燈柱長(zhǎng)為13米.
(2)(。值為;(ⅱ) 長(zhǎng)為米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=。
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點(diǎn),且3EM=EC,試問(wèn)在線段BC上是否存在一點(diǎn)T,使得MT∥平面BDE,若存在,試指出點(diǎn)T的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱中,底面是矩形,且, , ,若為的中點(diǎn),且.
(Ⅰ)求證: 平面;
(Ⅱ)線段上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處的切線方程為.
(1)求的值;(2)若對(duì)任意的,都有成立,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市出租車(chē)的現(xiàn)行計(jì)價(jià)標(biāo)準(zhǔn)是:路程在2 km以?xún)?nèi)(含2 km)按起步價(jià)8元收取,超過(guò)2 km后的路程按1.9 元/km收取,但超過(guò)10 km后的路程需加收50%的返空費(fèi)(即單價(jià)為1.9×(1+50%)=2.85(元/km)).
(1)將某乘客搭乘一次出租車(chē)的費(fèi)用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16 km,他準(zhǔn)備先乘一輛出租車(chē)行駛8 km后,再換乘另一輛出租車(chē)完成余下行程,請(qǐng)問(wèn):他這樣做是否比只乘一輛出租車(chē)完成全部行程更省錢(qián)?
(現(xiàn)實(shí)中要計(jì)等待時(shí)間且最終付費(fèi)取整數(shù),本題在計(jì)算時(shí)都不予考慮)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分13分) 已知橢圓經(jīng)過(guò)點(diǎn),離心率為,過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1) 為何值時(shí), .①有且僅有一個(gè)零點(diǎn);②有兩個(gè)零點(diǎn)且均比-1大;
(2)若函數(shù)有4個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式an與前n項(xiàng)和公式Sn;
(Ⅱ)令bn= (k<0),若{bn}是等差數(shù)列,求數(shù)列{}的前n項(xiàng)和Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com