已知數(shù)列{an}中,對任意n∈N*都有an+2=an+1-an,若該數(shù)列前63項(xiàng)和為4000,前125項(xiàng)和為1000,則該數(shù)列前2011項(xiàng)和為( )
A.0
B.1000
C.3000
D.5000
【答案】分析:根據(jù)遞推公式an+2=an+1-an可知,此數(shù)列為周期為T=6的周期數(shù)列,并且每6項(xiàng)的和為0,再根據(jù)前63項(xiàng)的和,前125項(xiàng)的和,計(jì)算出a1即可知前2011項(xiàng)的和.
解答:解:由題意知:
∵an+2=an+1-an 令n=n+1得
∴an+3=an+2-an+=an+1-an-an+1=-an
再令n=n+3得:an+6=-an+3=an 
所以 T=6
 又∵前6項(xiàng)分別為:a1,a2,a2-a1,-a1,-a2,a1-a2   
∴每6項(xiàng)和為0,即s6=0
又∵s63=a1+a2+a3=2a2=4000
∴a2=2000
又∵s125=a1+a2+a3+a4+a5=a2-a1=1000
∴a1=1000
又∵s2011=a1
所以s2011=1000
故選B.
點(diǎn)評:本題必須根據(jù)遞推公式,先觀察出此數(shù)列為周期數(shù)列,求出a1,然后才能求出s2011的和,對學(xué)生來說入手比較難.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項(xiàng)公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
2n
an
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項(xiàng)和,且Sn
1
an
的一個(gè)等比中項(xiàng)為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊答案