11.已知命題p:若x<-3,則x2-2x-8>0,則下列敘述正確的是( 。
A.命題p的逆命題是:若x2-2x-8≤0,則x<-3
B.命題p的否命題是:若x≥-3,則x2-2x-8>0
C.命題p的否命題是:若x<-3,則x2-2x-8≤0
D.命題p的逆否命題是真命題

分析 根據(jù)四種命題之間的關(guān)系,對(duì)選項(xiàng)中的命題真假性進(jìn)行判斷即可.

解答 解:命題p:若x<-3,則x2-2x-8>0,
則命題p的逆命題是:若x2-2x-8>0,則x<-3,故A錯(cuò)誤;
命題p的否命題是:若x≥-3,則x2-2x-8≤0,故B、C錯(cuò)誤;
因?yàn)槊}p:若x<-3,則x2-2x-8>0是真命題,
所以p的逆否命題也是真命題,D正確.
故選:D.

點(diǎn)評(píng) 本題考查了四種命題之間的關(guān)系與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知a>0,b>0,且a+b=1,則($\frac{1}{a}$+2)($\frac{1}$+2)的最小值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知x=1是函數(shù)f(x)=ax3-bx-lnx(a>0,b∈R)的一個(gè)極值點(diǎn),則lna與b-1的大小關(guān)系是( 。
A.lna>b-1B.lna<b-1C.lna=b-1D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x-1)<f(3)的實(shí)數(shù)x的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將函數(shù)$f(x)=sin({4x+\frac{π}{3}})$的圖象向左平移φ(φ>0)個(gè)單位后關(guān)于直線x=$\frac{π}{12}$對(duì)稱(chēng),則φ的最小值為(  )
A.$\frac{π}{6}$B.$\frac{5π}{24}$C.$\frac{π}{4}$D.$\frac{7π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且3Sn=an+1-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)等差數(shù)列{bn}的前n項(xiàng)和為T(mén)n,a2=b2,T4=1+S3,求$\frac{2{T}_{n}+48}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.曲線y=x3-2x+m在x=1處的切線斜率等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且(x+1)f(x)+xf′(x)>0對(duì)x∈R恒成立,則下列函數(shù)在實(shí)數(shù)集內(nèi)一定是增函數(shù)的為( 。
A.f(x)B.xf(x)C.exf(x)D.xexf(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤1}\\{y≤x}\\{y≥-2}\end{array}\right.$,則z=3x-y的最大值為(  )
A.1B.-4C.7D.11

查看答案和解析>>

同步練習(xí)冊(cè)答案