【題目】已知、是異面直線,給出下列結(jié)論:

①一定存在平面,使直線平面,直線平面;

②一定存在平面,使直線平面,直線平面;

③一定存在無數(shù)個平面,使直線與平面交于一個定點,且直線平面

則所有正確結(jié)論的序號為(

A.①②B.C.②③D.

【答案】C

【解析】

利用反證法結(jié)合線面垂直的定義可判斷①的正誤;利用面面平行的性質(zhì)可判斷②的正誤;利用正方體模型判斷③的正誤.綜合可得出結(jié)論.

對于①,假設(shè)存在平面,使得,

過直線作平面,使得,則,,則,可得

、不一定垂直,矛盾,假設(shè)不成立,命題①錯誤;

對于②,在空間一點,,由于、是異面直線,則,

直線、確定平面,使得,,則,,命題②正確;

對于③,如下圖所示:

在正方體中,為異面直線,

存在平面,使得平面,且平面

將平面平移,可形成無數(shù)個平面滿足條件,命題③正確.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

1)若,求函數(shù)上的最小值;

2)求函數(shù)的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的直觀圖如圖所示:

1)判斷平面與平面的位置關(guān)系,并證明你的結(jié)論.

2)證明:直線平面.

3)若,求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人獨立地對某一技術(shù)難題進行攻關(guān)。甲能攻克的概率為,乙能攻克的概率為,丙能攻克的概率為.

1)求這一技術(shù)難題被攻克的概率;

2)若該技術(shù)難題末被攻克,上級不做任何獎勵;若該技術(shù)難題被攻克,上級會獎勵萬元。獎勵規(guī)則如下:若只有1人攻克,則此人獲得全部獎金萬元;若只有2人攻克,則獎金獎給此二人,每人各得萬元;若三人均攻克,則獎金獎給此三人,每人各得萬元。設(shè)甲得到的獎金數(shù)為X,求X的分布列和數(shù)學(xué)期望。(本題滿分12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某糕點房推出一類新品蛋糕,該蛋糕的成本價為4元,售價為8元.受保質(zhì)期的影響,當(dāng)天沒有銷售完的部分只能銷毀.經(jīng)過長期的調(diào)研,統(tǒng)計了一下該新品的日需求量.現(xiàn)將近期一個月(30天)的需求量展示如下:

日需求量x

20

30

40

50

天數(shù)

5

10

10

5

(1)從這30天中任取兩天,求兩天的日需求量均為40個的概率.

(2)以上表中的頻率作為概率,列出日需求量的分布列,并求該月的日需求量的期望.

(3)根據(jù)(2)中的分布列求得當(dāng)該糕點房一天制作35個該類蛋糕時,對應(yīng)的利潤的期望值為;現(xiàn)有員工建議擴大生產(chǎn)一天45個,求利用利潤的期望值判斷此建議該不該被采納.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站退出了關(guān)于生態(tài)文明建設(shè)進展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護問題仍是百姓最為關(guān)心的熱點,參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(I)求出的值;

(II)求出這200人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)(精確到小數(shù)點后一位);

(III)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調(diào)查,求第2組恰好抽到2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則的取值范圍為( 。

A. (﹣1,+∞)B. (﹣1,1]C. (﹣∞,1)D. [﹣1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)應(yīng)用知識競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次測試成績中隨機抽取8次,記錄如下:

(Ⅰ)分別估計甲、乙兩名同學(xué)在培訓(xùn)期間所有測試成績的平均分;

(Ⅱ)從上圖中甲、乙兩名同學(xué)高于85分的成績中各選一個成績作為參考,求甲、乙兩人成績都在90分以上的概率;

(Ⅲ)現(xiàn)要從甲、乙中選派一人參加正式比賽,根據(jù)所抽取的兩組數(shù)據(jù)分析,你認(rèn)為選派哪位同學(xué)參加較為合適?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.

(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;

(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍;

(3)若為定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍;

查看答案和解析>>

同步練習(xí)冊答案