已知函數(shù)
(1)若
,判斷函數(shù)
在
上的單調(diào)性并用定義證明;
(2)若函數(shù)
在
上是增函數(shù),求實數(shù)
的取值范圍.
(1)函數(shù)
在
上是增函數(shù).(2)
試題分析: (1)由分離常數(shù)法判斷函數(shù)
的單調(diào)性,由定義法來證明
在
上的單調(diào)性注意通分后分解因式,判定各因式的符號.
(2)設
由
增函數(shù)知
,然后分解因式判定含有
因式的符號
試題解析: (1)當
時,
, 1分
設
,則
3分
∵
∴
,
∴
>0, 5分
即
,∴函數(shù)
在
上是增函數(shù). 6分
(2)設
,由
在
上是增函數(shù),有
即
成立, 8分
∵
,∴
,
必須
11分
所以,實數(shù)
的取值范圍是
12分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知奇函數(shù)
(1)求實數(shù)
的值,并在給出的直角坐標系中畫出
的圖象;
(2)若函數(shù)
在區(qū)間
上單調(diào)遞增,試確定實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
,當
時,對應
值的集合為
.
(1)求
的值;(2)若
,求該函數(shù)的最值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)
的定義域為
,并且滿足
,且
,當
時,
(1).求
的值;(3分)
(2).判斷函數(shù)
的奇偶性;(3分)
(3).如果
,求
的取值范圍.(6分)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若函數(shù)
滿足對任意的
,當
時
,則實數(shù)
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
函數(shù)
的單調(diào)增區(qū)間是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設函數(shù)
的最大值為
,最小值為
,則
__________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
,則a,b,c的大小關系是 ( )
A.a(chǎn)>c>b | B.a(chǎn)>b>c | C.c>a>b | D.b>c>a |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
,
,若偶函數(shù)
滿足
(其中m,n為常數(shù)),且最小值為1,則
.
查看答案和解析>>