【題目】已知二次函數(shù)f(x)=x2+2bx+c(b,c∈R).
(1)若函數(shù)y=f(x)的零點(diǎn)為﹣1和1,求實(shí)數(shù)b,c的值;
(2)若f(x)滿足f(1)=0,且關(guān)于x的方程f(x)+x+b=0的兩個(gè)實(shí)數(shù)根分別在區(qū)間(﹣3,﹣2),(0,1)內(nèi),求實(shí)數(shù)b的取值范圍.

【答案】
(1)解:∵﹣1,1是函數(shù)y=f(x)的零點(diǎn),∴ ,解得b=0,c=﹣1
(2)解:∵f(1)=1+2b+c=0,所以c=﹣1﹣2b.

令g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x﹣b﹣1,

∵關(guān)于x的方程f(x)+x+b=0的兩個(gè)實(shí)數(shù)根分別在區(qū)間(﹣3,﹣2),(0,1)內(nèi),

,即 .解得 <b< ,

即實(shí)數(shù)b的取值范圍為( ,


【解析】(1)根據(jù)根與系數(shù)的關(guān)系列方程組解出;(2)根據(jù)f(1)=0得出b,c的關(guān)系,令g(x)=f(x)+x+b,根據(jù)零點(diǎn)的存在性定理列方程組解出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+b)(其中a,b為常數(shù),且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(﹣2,0),B(1,2).
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=( 2x﹣( x﹣1,x∈[0,+∞),求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x﹣ ,且f( )=3.
(1)求實(shí)數(shù)a的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x2﹣1)定義域?yàn)閇0,3],則f(2x﹣1)的定義域?yàn)?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分15如圖,在四棱錐,平面PAD平面ABCD, ,E是BD的中點(diǎn)

求證:EC//平面APD;

求BP與平面ABCD所成角的正切值;

求二面角正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 表示兩條不同的直線, , , 表示三個(gè)不同的平面,給出下列四個(gè)命題:

, , ,則;

, ,則;

, ,則

, ,則

其中正確命題的序號(hào)為( )

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知非空集合A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},
(1)當(dāng)a=10時(shí),求A∩B,A∪B;
(2)求能使AB成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镈,若對(duì)任意x1 , x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;② ;③f(1﹣x)=2﹣f(x).則 =(
A.1
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案